Advertisement

Rare Metals

pp 1–8 | Cite as

Deep drawing of 6A16 aluminum alloy for automobile body with various blank-holder forces

  • Zhao-Yang Liu
  • Bai-Qing Xiong
  • Xi-Wu Li
  • Li-Zhen Yan
  • Zhi-Hui Li
  • Yong-An Zhang
  • Hong-Wei Liu
Article
  • 3 Downloads

Abstract

Based on the ABAQUS/explicit finite element method, the deep drawing of 6A16 alloy pre-aged and then storaged at room temperature for 1 week with various blank-holder forces (10, 14, 18 kN) was studied. The distribution and variation of stress and strain in deformation zones were investigated to drive the forming property and process of the alloy. Besides, the simulation result was verified combined with the deep drawing experiments. The results show that the stress and strain of the deformation zone have an incremental trend with the blank-holder force increasing while the deformation degree and grain size within a certain deformation zone have an obvious increase and an enlargement, respectively. After the deep drawing, the hardness of products also increases with the enhancement of blank-holder force. The blank-holder force of 18 kN is certified as the preferential one by the analysis of microstructure and simulation results.

Keywords

ABAQUS 6A16 aluminum alloy Deep drawing test Blank-holder force 

Notes

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300805).

References

  1. [1]
    Hirsch J, Al-Sammam T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013;61(3):818.CrossRefGoogle Scholar
  2. [2]
    Ni JL, Li L, Liu Q, Zhao FQ, Xu Y, Guo SJ, Changhai B. The study of aluminum alloy application on automotive control arm. In: Proceedings of the FISITA 2012 World Automotive Congress Berlin, Berlin; 2013. 901.Google Scholar
  3. [3]
    Lin FU. Discussion on the application of aluminum alloy and magnesium alloy in automotive industry. Automob Technol Mater. 2006;2006(8):8.Google Scholar
  4. [4]
    Ilangovan M, Boopathy SR, Balasubramanian V. Microstructure and tensile properties of friction stir welded dissimilar AA6061-AA5086 aluminium alloy joints. Trans Nonferrous Met Soc China. 2015;25(4):1080.CrossRefGoogle Scholar
  5. [5]
    He ZB, Fan XB, Shao F, Zheng KL, Wang ZB, Yuan SJ. Formability and microstructure of AA6061 Al alloy tube for hot metal gas forming at elevated temperature. Trans Nonferrous Met Soc China. 2012;22(S2):364.CrossRefGoogle Scholar
  6. [6]
    Wang H, Luo YB, Friedman P, Chen MH, Gao L. Warm forming behavior of high strength aluminum alloy AA7075. Trans Nonferrous Met Soc China. 2012;22(1):1.CrossRefGoogle Scholar
  7. [7]
    Groche P, Norman M. Tribological investigation of deep-drawing processes using servo presses. In: ASME 2012 International Manufacturing Science and Engineering Conference. Notre Dame, Indiana, USA; 2012. 127.Google Scholar
  8. [8]
    Ghosh M, Miroux A, Werkhoven RJ, Bolt PJ, Kestens LAI. Warm deep-drawing and post drawing analysis of two Al–Mg–Si alloys. J Mater Process Technol. 2014;214(4):756.CrossRefGoogle Scholar
  9. [9]
    Dong GJ, Zhao CC, Cao MY. Process of back pressure deep drawing with solid granule medium on sheet metal. J Cent South Univ. 2014;21(7):2617.CrossRefGoogle Scholar
  10. [10]
    Qin SJ, Huang XZ, Wang J. Research on axisymmetrical deep drawing process based on radial double blank segmental blank-holder technique. Chin J Mech Eng. 2011;22(14):1741.Google Scholar
  11. [11]
    Qin SJ, Xiong BQ, Hong LU, Zhang TT. Critical blank-holder force in axisymmetric deep drawing. Trans Nonferrous Met Soc China. 2012;22(S2):s239.CrossRefGoogle Scholar
  12. [12]
    Yan LZ, Zhang YA, Li XW, Li ZH, Wang F, Liu WH, Xiong BQ. Microstructural evolution of Al–0.66Mg–0.85Si alloy during homogenization. Trans Nonferrous Met Soc China. 2014;24(4):939.CrossRefGoogle Scholar
  13. [13]
    Djavanroodi F, Derogar A. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater Des. 2010;31(10):4866.CrossRefGoogle Scholar
  14. [14]
    Bhattacharya R, Stanton M, Dargue I, Williams G, Aylmore R. Forming limit studies on different thickness aluminium 6xxx series alloys used in automotive applications. Int J Mater Form. 2010;3(1):267.CrossRefGoogle Scholar
  15. [15]
    Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, Ghiotti A, Khraisheh M, Merklein M, Tekkaya AE. Testing and modeling of material behavior and formability in sheet metal forming. CIRP Ann Manuf Technol. 2014;63(2):727.CrossRefGoogle Scholar
  16. [16]
    Du B, Zhao CC, Dong GJ, Ya YY. Study on thin-walled tube forming by solid granule medium forming. ICIC Express Lett. 2014;8(9):2649.Google Scholar
  17. [17]
    Davies G. Materials for Automobile Bodies. 2nd ed. Oxford: Butterworth-Heinemann; 2004. 1.Google Scholar
  18. [18]
    Fan XB, He ZB, Yuan SJ, Zheng KL. Experimental investigation on hot forming-quenching integrated process of 6A02 aluminum alloy sheet. Mater Sci Eng A. 2013;573(18):154.CrossRefGoogle Scholar
  19. [19]
    Inoue H, Yamasaki T, Gottstein G, Houtte PV, Takasug TL. Recrystallization texture and r-value of rolled and T4-treated Al–Mg–Si alloy sheets. Mater Sci Forum. 2005;495–497:573.CrossRefGoogle Scholar
  20. [20]
    Cao MY, Zhao CC, Wu LJ, Dong GJ. Lubricant research on SGMF of magnesium alloy sheet. Adv Mater Res. 2013;675:311.CrossRefGoogle Scholar
  21. [21]
    Yoon H, Alexandro S, Chung K, Dick RE, Kang JK. Prediction of critical blank-holding force criterion to prevent wrinkle. Mater Sci Forum. 2006;505–507:1273.CrossRefGoogle Scholar
  22. [22]
    Oliveira MC, Alves JL, Menezes LF. Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch Comput Methods Eng. 2008;15(2):113.CrossRefGoogle Scholar
  23. [23]
    Liu X, Liu W, Wang C, Zhao Q. Numerical simulation of aluminum alloy conical cup forming by hydro-mechanical deep drawing. In: International Forum on Strategic Technology. Harbin; 2011. 181.Google Scholar
  24. [24]
    Wang W, Liu C, Li D. Cylindrical deep drawing test and finite element simulation of 2024 aluminum alloy sheet. Forg Stamp Technol. 2014;39(11):1.Google Scholar
  25. [25]
    Dwivedi R, Agnihotri G. Numerical simulation of aluminum and brass material cups in deep drawing process. Mater Today Proc. 2015;2(4–5):1942.CrossRefGoogle Scholar
  26. [26]
    Jain M, Allin J, Bull MJ. Deep drawing characteristics of automotive aluminum alloys. Mater Sci Eng A. 1998;256(1–2):69.CrossRefGoogle Scholar
  27. [27]
    Greze R, Manach PR, Laurent H, Thuillier S, Menezes LF. Influence of the temperature on residual stresses and spring back effect in an aluminium alloy. Int J Mech Sci. 2010;52(9):1094.CrossRefGoogle Scholar
  28. [28]
    Doege E, Schmidt-Jürgensen R, Huinink S, Yun JW. Development of an optical sensor for the measurement of the material flow in deep drawing processes. CIRP Ann Manuf Technol. 2003;52(1):225.CrossRefGoogle Scholar
  29. [29]
    Zhou J, Wang BY, Lin JG, Fu L. Optimization of aluminum alloy anti-collision side beam hot stamping process using multi-objective genetic algorithm. Arch Civ Mech Eng. 2013;13(3):401.CrossRefGoogle Scholar
  30. [30]
    Palanivel R, Mathews PK, Murugan N. Optimization of process parameters to maximize ultimate tensile strength of friction stir welded dissimilar aluminum alloys using response surface methodology. J Cent South Univ. 2013;20(11):2929.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations