Advertisement

Rare Metals

pp 1–9 | Cite as

Microstructure and room temperature fracture toughness of Nb–Si-based alloys with Sr addition

  • Yong-Lin Huang
  • Li-Na Jia
  • Bin Kong
  • Yue-Ling Guo
  • Na Wang
Article
  • 32 Downloads

Abstract

Nb–Si-based alloys show great potential to surpass the widely used Ni-based superalloys. The element Sr is widely applied in aluminum and magnesium alloys, but reports about the effects of Sr on Nb–Si-based alloys are quite rare. So, Nb–Si-based alloys with nominal compositions of Nb–15Si–24Ti–4Cr–2Al–2Hf–0/0.05/0.15Sr (at%) were prepared by directional solidification and heat treatment. The microstructural characterization and room temperature fracture toughness of Nb–Si-based alloy were systematically investigated. Results show that all these alloys consist of Nb5Si3 phase embedded within Nb solid solution (Nbss) matrix. The Nb5Si3 phase becomes refined and more discontinuous after adding minor Sr. As for the fracture toughness, 0.05 at% and 0.15 at% Sr additions do not cause significant change. The discontinuous and refining mechanism of Sr element was studied, and the analysis of toughness decreasing with Sr addition reveals that the size of Nbss phase plays a crucial role in determining the fracture toughness.

Keywords

Nb–Si alloy Refinement Discontinuous Fracture toughness Nbss 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51471013, 51571004 and 51401017).

References

  1. [1]
    Reed RC. The Superalloys: Fundamentals and Applications. London: Cambridge University Press; 2006. 372.CrossRefGoogle Scholar
  2. [2]
    Perepezko JH. The hotter the engine, the better. Science. 2009;326(5956):1068.CrossRefGoogle Scholar
  3. [3]
    Tang Y, Guo XP. High temperature deformation behavior of an optimized Nb–Si based ultrahigh temperature alloy. Scripta Mater. 2016;116:16.CrossRefGoogle Scholar
  4. [4]
    Subramanian PR, Mendiratta MG, Dimiduk DM. The development of Nb-based advanced intermetallic alloys for structural applications. JOM. 1996;48(1):33.CrossRefGoogle Scholar
  5. [5]
    Bewlay BP, Jackson MR, Lipsitt HA. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite. Metall Mater Trans A. 1996;27(12):3801.CrossRefGoogle Scholar
  6. [6]
    Chan KS. A computational approach to designing ductile Nb–Ti–Cr–Al solid-solution alloys. Metall Mater Trans A. 2001;32(10):2475.CrossRefGoogle Scholar
  7. [7]
    Chan KS. Alloying effects on fracture mechanisms in Nb-based intermetallic in situ composites. Mater Sci Eng, A. 2002; 329–331(6):513.CrossRefGoogle Scholar
  8. [8]
    Bewlay BP, Lipsitt HA, Jackson MR, Reeder WJ, Sutliff JA. Solidification processing of high temperature intermetallic eutectic-based alloys. Mater Sci Eng, A. 1995; 192–193(95):534.CrossRefGoogle Scholar
  9. [9]
    Zhao JC. Ultrahigh-temperature materials for jet engines. MRS Bull. 2003;28(9):622.CrossRefGoogle Scholar
  10. [10]
    Bewlay BP, Jackson MR, Subramanian PR, Zhao JC. A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans A. 2003;34(10):2043.CrossRefGoogle Scholar
  11. [11]
    Sha JB, Hirai H, Tabaru T, Kitahara A, Ueno H, Hanada S. High-temperature strength and room-temperature toughness of Nb–W–Si–B alloys prepared by arc-melting. Mater Sci Eng, A. 2004;364(1–2):151.CrossRefGoogle Scholar
  12. [12]
    Guo EY, Singh SS, Mayer C, Meng XY, Xu YJ, Luo LS, Wang MY, Chawla N. Effect of gallium addition on the microstructure and micromechanical properties of constituents in Nb-Si based alloys. J Alloys Compd. 2017;704:89.CrossRefGoogle Scholar
  13. [13]
    Miura S, Aoki M, Saeki Y, Ohkubo K, Mohri T, Mishima Y. Effects of Zr on the eutectoid decomposition behavior of Nb3Si into Nb/Nb5Si3. Metall Mater Trans A. 2005;36(3):489.CrossRefGoogle Scholar
  14. [14]
    Zhang LJ, Guo XP. Mechanical alloying behavior of Nb–Ti–Si-based alloy made from elemental powders by ball milling process. Rare Met. 2017;36(3):174.CrossRefGoogle Scholar
  15. [15]
    Zhang SN, Jia LN, Guo YL, Kong B, Zhang FX, Zhang H. High-temperature oxidation behavior of Nb–Si-based alloy with separate vanadium, tantalum, tungsten and zirconium addition. Rare Met. 2017;36(9):1.Google Scholar
  16. [16]
    Wang J, Guo XP, Guo JM. Effects of B on the microstructure and oxidation resistance of Nb–Ti–Si-based ultrahigh-temperature Alloy. Chin J Aeronaut. 2009;22(5):544.CrossRefGoogle Scholar
  17. [17]
    Guo YL, Jia LN, Kong B, Zhang HR, Zhang H. Simultaneous improvement in fracture toughness and oxidation resistance of Nb–Si based alloys by vanadium addition. Mater Sci Eng, A. 2017;701:149.CrossRefGoogle Scholar
  18. [18]
    Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd. 2016;660:461.CrossRefGoogle Scholar
  19. [19]
    Wang P, Tan XP, Nai MLS, Shu BT, Wei J. Spatial and geometrical-based characterization of microstructure and microhardness for an electron beam melted Ti–6Al–4V component. Mater Des. 2016;95:287.CrossRefGoogle Scholar
  20. [20]
    Jia LN, Weng JF, Li Z, Hong Z, Su LF, Zhang H. Room temperature mechanical properties and high temperature oxidation resistance of a high Cr containing Nb–Si based alloy. Mater Sci Eng, A. 2015;623:32.CrossRefGoogle Scholar
  21. [21]
    Grammenos I, Tsakiropoulos P. Study of the role of Al, Cr and Ti additions in the microstructure of Nb–18Si–5Hf base alloys. Intermetallics. 2010;18(2):242.CrossRefGoogle Scholar
  22. [22]
    Geng J, Tsakiropoulos P. A study of the microstructures and oxidation of Nb–Si–Cr–Al–Mo in situ composites alloyed with Ti, Hf and Sn. Intermetallics. 2007;15(3):382.CrossRefGoogle Scholar
  23. [23]
    Yuan SN, Jia LN, Ma LM, Cui RJ, Su LF, Zhang H. The microstructure optimizing of the Nb–14Si–22Ti–4Cr–2Al–2Hf alloy processed by directional solidification. Mater Lett. 2012;84(10):124.CrossRefGoogle Scholar
  24. [24]
    Yuan SN, Jia LN, Ma LM, Jiang H, Zhang H. Eutectic formation during directional solidification: effect of the withdrawal rate. Mater Lett. 2013;92(2):317.CrossRefGoogle Scholar
  25. [25]
    Kim WY, Tanaka H, Kasama A, Hanada S. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites. Intermetallics. 2001;9(9):827.CrossRefGoogle Scholar
  26. [26]
    Li Z, Yuan SN, Jia LN, Kong B, Hong Z, Zhang H. Microstructure evolution of eutectic Nb–24Ti–15Si–4Cr–2Al–2Hf alloy processed by directional solidification. Rare Met. 2017;36(6):472.CrossRefGoogle Scholar
  27. [27]
    Liu XR, Zhang YD, Beausir B, Liu F, Esling C, Yu FX, Zhao X, Zuo L. Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al–12.7%Si alloys investigated by SEM/EBSD. Acta Mater. 2015;97:338.CrossRefGoogle Scholar
  28. [28]
    Timpel M, Wanderka N, Schlesiger R, Yamamoto T, Lazarev N, Isheim D, Schmitz G, Matsumura S, Banhart J. The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 2012;60(9):3920.CrossRefGoogle Scholar
  29. [29]
    Zhao HL, Zhang CB, Gao Y, Sun QY. Refining performance of Al–3Ti–0.2C–5Sr on A356 alloy and electron microanalysis of ternary Al–Ti–Sr phases. Rare Met. 2017;36(3):1.CrossRefGoogle Scholar
  30. [30]
    Yang MB, Pan FS, Jia S, Liang B. Comparison of Sb and Sr on modification and refinement of Mg2Si phase in AZ61–0.7Si magnesium alloy. Trans Nonferrous Met Soc China. 2009;19(2):287.CrossRefGoogle Scholar
  31. [31]
    Cheng RJ, Pan FS, Jiang S, Li C, Jiang B, Jiang XQ. Effect of Sr addition on the grain refinement of AZ31 magnesium alloys. Prog Nat Sci Mater. 2013;23(1):7.CrossRefGoogle Scholar
  32. [32]
    Haynes WM. CRC Handbook of Chemistry and Physics, 95th. Boca Raton: CRC Press LCC. 2012. 1.Google Scholar
  33. [33]
    Cheng GM, He LL. Microstructure evolution and room temperature deformation of a unidirectionally solidified Nb–22Ti–16Si–3Ta–2Hf–7Cr–3Al–0.2Ho (at%) alloy. Intermetallics. 2011;19(2):196.CrossRefGoogle Scholar
  34. [34]
    Geng J, Tsakiropoulos P, Shao G. A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites. Intermetallics. 2007;15(1):69.CrossRefGoogle Scholar
  35. [35]
    Yuan SN, Jia LN, Su LF, Ma LM, Zhang H. The microstructure evolution of directionally solidified Nb–22Ti–14Si–4Cr–2Al–2Hf alloy during heat treatment. Intermetallics. 2013;38(14):102.Google Scholar
  36. [36]
    Guo YL, Jia LN, Kong B, Zhang HR, Zhang H. Microstructure and fracture toughness of Nb–Si based alloys with Ta and W additions. Intermetallics. 2018;92:1.CrossRefGoogle Scholar
  37. [37]
    Li YL, Ma CL, Zhang H, Miura S. Mechanical properties of directionally solidified Nb–Mo–Si-based alloys with aligned Nbss/Nb5Si3 lamellar structure. Mater Sci Eng, A. 2011;528(18):5772.CrossRefGoogle Scholar
  38. [38]
    Li XJ, Chen HF, Sha JB, Zhang H. The effects of melting technologies on the microstructures and properties of Nb–16Si–22Ti–2Al–2Hf–17Cr alloy. Mater Sci Eng, A. 2010;527(23):6140.CrossRefGoogle Scholar
  39. [39]
    Liu W, Sha JB. Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16 Si-based alloys prepared via spark plasma sintering. Mater Des. 2016;111:301.CrossRefGoogle Scholar
  40. [40]
    Fei T, Yu YX, Zhou CG, Sha JB. The deformation and fracture modes of fine and coarsened Nbss phase in a Nb–20Si–24Ti–2Al–2Cr alloy with a Nbss/Nb5Si3 microstructure. Mater Des. 2016;116:92.CrossRefGoogle Scholar
  41. [41]
    Callister WDJ. Materials Science and Engineering: An Introduction. New York: Wiley; 2007. 1.Google Scholar
  42. [42]
    Lee YC, Dahle AK, Stjohn DH. The role of solute in grain refinement of magnesium. Metall Mater Trans A. 2000;31(11):2895.CrossRefGoogle Scholar
  43. [43]
    Zeng XQ, Wang YX, Ding WJ, Luo AA, Sachdev AK. Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy. Metall Mater Trans A. 2006;37(4):1333.CrossRefGoogle Scholar
  44. [44]
    Du J, Yang J, Kuwabara M, Li W, Peng J. Effect of strontium on the grain refining efficiency of Mg–3Al alloy refined by carbon inoculation. J Alloys Compd. 2009;470(1):228.CrossRefGoogle Scholar
  45. [45]
    Yang M, Pan F. Processing effects on grain refinement of AZ31 magnesium alloy treated with a commercial Al–10Sr master alloy. J Mater Eng Perform. 2009;18(1):32.CrossRefGoogle Scholar
  46. [46]
    Li P, Tang B, Kandalova EG. Microstructure and properties of AZ91D alloy with Ca additions. Mater Lett. 2005;59(6):671.CrossRefGoogle Scholar
  47. [47]
    Davidson DL, Chan KS, Anton DL. The effects on fracture toughness of ductile-phase composition and morphology in Nb–Cr–Ti and Nb–Si in situ composites. Metall Mater Trans A. 1996;27(10):3007.CrossRefGoogle Scholar
  48. [48]
    Chan KS. The fracture toughness of niobium-based, in situ composites. Metall Mater Trans A. 1996;27(9):2518.CrossRefGoogle Scholar
  49. [49]
    Chan KS, Davidson DL, Anton DL. Fracture toughness and fatigue crack growth in rapidly quenched Nb–Cr–Ti in situ composites. Metall Mater Trans A. 1997;28(9):1797.CrossRefGoogle Scholar
  50. [50]
    Chan KS, Davidson DL. Effects of Ti addition on cleavage fracture in Nb–Cr–Ti solid-solution alloys. Metall Mater Trans A. 1999;30(6):1686.CrossRefGoogle Scholar
  51. [51]
    Davidson DL, Chan KS, Loloee R, Crimp MA. Fatigue and fracture toughness of a Nb–Ti–Cr–Al–X single-phase alloy at ambient temperature. Metall Mater Trans A. 2000;31(4):1075.CrossRefGoogle Scholar
  52. [52]
    Sekido N, Kimura Y, Miura S, Wei FG, Mishima Y. Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys. J Alloys Compd. 2006;425(1):223.CrossRefGoogle Scholar
  53. [53]
    Guo BH, Guo XP. Effect of withdrawal rates on microstructures and room temperature fracture toughness in a directionally solidified Nb–Ti–Cr–Si based alloy. Mater Sci Eng, A. 2014;617(1):39.CrossRefGoogle Scholar
  54. [54]
    Papadimitriou I, Utton C, Tsakiropoulos P. The impact of Ti and temperature on the stability of Nb5Si3 phases: a first-principles study. Sci Technol Adv Mater. 2017;18(1):467.CrossRefGoogle Scholar
  55. [55]
    Tian YX, Guo JT, Sheng LY, Cheng GM, Zhou LZ, He LL, Ye HQ. Microstructures and mechanical properties of cast Nb–Ti–Si–Zr alloys. Intermetallics. 2008;16(6):807.CrossRefGoogle Scholar
  56. [56]
    Kong B, Jia LN, Su LF, Guan K, Weng JF, Zhang H. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys. Mater Sci Eng, A. 2015;639(47):114.CrossRefGoogle Scholar
  57. [57]
    Guan K, Jia LN, Kong B, Yuan SN, Zhang H. Study of the fracture mechanism of Nbss/Nb5Si3in situ composite: based on a mechanical characterization of interfacial strength. Mater Sci Eng, A. 2016;663:98.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations