Advertisement

Rare Metals

pp 1–6 | Cite as

Morphology control of magnetic properties in cobalt nanowires

  • Huan-Huan Xu
  • Qiong Wu
  • Ming Yue
  • Cheng-Lin Li
  • Hong-Jian Li
Article
  • 4 Downloads

Abstract

Cobalt nanowires with different shapes and sizes were synthesized by reduction of carboxylate salts of CoII in 1, 2-butanediol using a solvothermal chemical process. The well-crystallized Co nanowires with hexagonal close-packed (hcp) phase are observed and the (002) crystalline direction is along the long axis of nanowires. The morphology control is strongly dependent on the reaction parameters. By varying the amount of capping agent in proper ranges, the effect of reaction parameters on controlling the size and shape of Co nanowires is demonstrated. With the amount of capping agent increasing, the aspect ratio of Co nanowires increases remarkably. However, the magnetic measurement of cobalt nanowires shows that the coercivity of the Co nanocrystals does not increase with the increase in aspect ratio monotonously, which suggests that the tip shape and microstructure also play an important role in the magnetization reversal process of the Co nanocrystals, and the aspect ratio plays a much less role as the ratio value exceeds 11. To further understand the effect of size on the magnetic properties in the Co nanowires, micromagnetic simulations were performed, which confirms that the magnetic properties are barely affected by the aspect ratio larger than 10. The highest coercivity of 624 kA·m−1 is obtained for ellipsoid nanowires with a mean length of 200 nm, which also displays a strong magnetic anisotropy. As a result, the highest energy product of the wires reaches 248 kJ·m−3.

Keywords

Co nanowires Morphology control Tip shape High energy product 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51401001, 51371011, 51331003), the International S&T Cooperation Program of China (No. 2015DFG52020).

References

  1. [1]
    Buschow KHJ. Intermetallic compounds of rare-earth and 3d transition metals. Rep Prog Phys. 1977;40(10):1179.CrossRefGoogle Scholar
  2. [2]
    Gandha KE, Elkins K, Poudyal N, Liu X, Liu JP. High energy product developed from cobalt nanowires. Sci Rep. 2014;4(4):5345.Google Scholar
  3. [3]
    Yan Z, Niu XY, Du XQ, Wang QC, Wu XJ, Zhou YN. Activating AlN thin film by introducing Co nanoparticles as a new anode material for thin-film lithium batteries. Rare Met. 2018;37(8):625.CrossRefGoogle Scholar
  4. [4]
    Maurer T, Ott F, Chaboussant G, Soumare Y, Piquemal JY, Viau G. Magnetic nanowires as permanent magnet materials. Appl Phys Lett. 2007;91(17):172501.CrossRefGoogle Scholar
  5. [5]
    Xu ML, Yue M, Li YQ, Wu Q, Gao Y. Structure and intrinsic magnetic properties of Sm1-xPr(x)Co5 (x = 0–0.6) compounds. Rare Met. 2016;35(8):627.CrossRefGoogle Scholar
  6. [6]
    Wang Z, Liu WQ, Zhang DT, Yue M, Huang XL, Li XL. Enhancement of corrosion resistance in sintered Nd–Fe–B permanent magnet doping with different CuZn5 contents. Rare Met. 2017;36(10):812.CrossRefGoogle Scholar
  7. [7]
    Ait Atmane K, Zighem F, Soumare Y, Ibrahim M, Boubekri R, Maurer T, Margueritat J, Piquemal JY, Ott F, Chaboussant G, Schoenstein F, Jouini N, Viau G. High temperature structural and magnetic properties of cobalt nanorods. J Solid State Chem. 2013;197(1):297.CrossRefGoogle Scholar
  8. [8]
    Zighem F, Mercone S. Magnetization reversal behavior in complex shaped Co nanowires: a nanomagnet morphology optimization. J Appl Phys. 2014;116(19):193904.CrossRefGoogle Scholar
  9. [9]
    Fang W, Panagiotopoulos I, Ott F, Boué F, Ait-Atmane K, Piquemal J-Y, Viau G, Dalmas F. Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets. J Nanopart Res. 2014;16(2):2265.CrossRefGoogle Scholar
  10. [10]
    Sun YL, Zhao JT, Liu Z, Xia WX, Zhu SM, Lee D, Yan AR. The phase and microstructure analysis of Alnico magnets with high coercivity. J Magn Magn Mater. 2015;379:58.CrossRefGoogle Scholar
  11. [11]
    Narayan Poudyal JPL. Advances in nanostructured permanent magnets research. J Phys D Appl Phys. 2012;46(4):43001.CrossRefGoogle Scholar
  12. [12]
    Sellmyer DJ. MaRS. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J Phys Condens Matter. 2001;13(25):R433.CrossRefGoogle Scholar
  13. [13]
    Ramazani A, Montazer AH. Fabrication of single crystalline, uniaxial single domain Co nanowire arrays with high coercivity. J Appl Phys. 2014;115(11):113902.CrossRefGoogle Scholar
  14. [14]
    Garcia J, Prida VM, Vega V, Rosa WO, Caballero-Flores R, Iglesias L, Hernando B. 2D and 3D ordered arrays of Co magnetic nanowires. J Magn Magn Mater. 2015;383:88.CrossRefGoogle Scholar
  15. [15]
    Maurer T, Gautrot S, Ott F, Chaboussant G, Zighem F, Cagnon L, Fruchart O. Ordered arrays of magnetic nanowires investigated by polarized small-angle neutron scattering. Phys Rev B. 2014;89(18):184423.CrossRefGoogle Scholar
  16. [16]
    Cho JU, Wu JH, Min JH, Ko SP, Soh JY, Liu QX, Kim YK. Control of magnetic anisotropy of Co nanowires. J Magn Magn Mater. 2006;303(2):e281.CrossRefGoogle Scholar
  17. [17]
    Gandha K, Tsai P, Chaubey G, Poudyal N, Elkins K, Cui J, Liu JP. Synthesis and characterization of FeCo nanowires with high coercivity. Nanotechnology. 2015;26(7):075601.CrossRefGoogle Scholar
  18. [18]
    Ott F, Maurer T, Chaboussant G, Soumare Y, Piquemal JY, Viau G. Effects of the shape of elongated magnetic particles on the coercive field. J Appl Phys. 2009;105(1):013915.CrossRefGoogle Scholar
  19. [19]
    Dumestre F, Chaudret B, Amiens C, Fromen MC, Casanove MJ, Renaud P, Zurcher P. Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew Chem. 2002;41(22):4286.CrossRefGoogle Scholar
  20. [20]
    Ouar N, Schoenstein F, Mercone S, Farhat S, Villeroy B, Leridon B, Jouini N. Spark-plasma-sintering magnetic field assisted compaction of Co80Ni20 nanowires for anisotropic ferromagnetic bulk materials. J Appl Phys. 2013;114(16):163907.CrossRefGoogle Scholar
  21. [21]
    Li W, Zhang J, Shen T, Jones GA, Grundy PJ. Magnetic nanowires fabricated by anodic aluminum oxide template—a brief review. Sci China Phys Mech Astron. 2011;54(7):1181.CrossRefGoogle Scholar
  22. [22]
    Montazer AH, Ramazani A, Almasi Kashi M, Zavašnik J. Developing high coercivity in large diameter cobalt nanowire arrays. J Phys D Appl Phys. 2016;49(44):445001.CrossRefGoogle Scholar
  23. [23]
    Astefanoaei I, Dumitru I, Diaconu A, Spinu L, Stancu A. The temperature dependence of hysteretic processes in Co nanowires arrays. J Appl Phys. 2008;103(7):07D930.CrossRefGoogle Scholar
  24. [24]
    Ren Y, Liu QF, Li SL, Wang JB, Han XH. The effect of structure on magnetic properties of Co nanowire arrays. J Magn Magn Mater. 2009;321(3):226.CrossRefGoogle Scholar
  25. [25]
    Kumar S. Morphological and magnetic characterization of electrodeposited cobalt nanowires. J Mater Sci. 2004;39(8):2951.CrossRefGoogle Scholar
  26. [26]
    Kumar S, Saini D. Structural and magnetic characterization of electrochemically deposited Co–Cu multilayer nanowires. J Mater Sci Mater Electron. 2012;24(4):1086.CrossRefGoogle Scholar
  27. [27]
    Kumar S. Large scale synthesis of uniform Au–Co alloy and multilayer nanowires using electrochemical deposition and their characterization. J Mater Sci Mater Electron. 2016;28(5):4530.CrossRefGoogle Scholar
  28. [28]
    Saini D, Chauhan RP, Kumar S. Effects of annealing on structural and magnetic properties of template synthesized cobalt nanowires useful as data storage and nano devices. J Mater Sci Mater Electron. 2013;25(1):124.CrossRefGoogle Scholar
  29. [29]
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T. Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed Engl. 2007;46(25):4630.CrossRefGoogle Scholar
  30. [30]
    Soumare Y, Piquemal JY, Maurer T, Ott F, Chaboussant G, Falqui A, Viau G. Oriented magnetic nanowires with high coercivity. J Mater Chem. 2008;18(46):5696.CrossRefGoogle Scholar
  31. [31]
    Gandha K, Poudyal N, Zhang Q, Liu JP. Effect of RuCl3 on morphology and magnetic properties of CoNi nanowires. IEEE Trans Magn. 2013;49(7):3273.CrossRefGoogle Scholar
  32. [32]
    Maurer T, Zighem F, Ott F, Chaboussant G, André G. Exchange bias in Co/CoO core–shell nanowires: role of antiferromagnetic superparamagnetic fluctuation. Phys Rev B. 2012;80(6):064427.CrossRefGoogle Scholar
  33. [33]
    Soumare Y, Garcia C, Maurer T, Chaboussant G, Ott F, Fiévet F, Piquemal JY, Viau G. Kinetically controlled synthesis of hexagonally close-packed cobalt nanorods with high magnetic coercivity. Adv Funct Mater. 2009;19(12):1971.CrossRefGoogle Scholar
  34. [34]
    Pousthomis M, Anagnostopoulou E, Panagiotopoulos I, Boubekri R, Fang W, Ott F, Atmane KA, Piquemal JY, Lacroix LM, Viau G. Localized magnetization reversal processes in cobalt nanorods with different aspect ratios. Nano Res. 2015;8(7):2231.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations