Rare Metals

, Volume 37, Issue 10, pp 875–880 | Cite as

Particle interaction during magnetization reversal process of anisotropic Sm2Fe17Nx powders

  • Ci-Fu Lu
  • Xiu-Feng Hong
  • Xiao-Qian Bao
  • Xue-Xu Gao
  • Jie ZhuEmail author


The particle interaction during magnetization reversal process is important for the applications and magnetic properties improvement of Sm2Fe17Nx powders. In this paper, an anisotropic Sm2Fe17Nx powder free of α-Fe was prepared by ball milling. The magnetically soft Sm2Fe17 powders with different particle sizes were added into the α-Fe-free Sm2Fe17Nx powder as easy nucleation sites, and the effects of these magnetically soft phases on the magnetization reversal process were investigated quantitatively. It is found that the squareness of Sm2Fe17Nx powder decreases obviously with the increasing number of Sm2Fe17 particle and the demagnetization curves can be divided into two stages. The magnetization reversal process suggests that the addition of magnetically soft powder should only reduce the coercivity of a specific part of Sm2Fe17Nx particles and the reversed domain walls cannot move easily across neighboring Sm2Fe17Nx particles. Based on the observed magnetization reversal process, the mechanical properties of magnetically soft phase should be considered in the preparation of anisotropic Sm2Fe17Nx powders.


Rare earth permanent magnets Sm2Fe17Nx Magnetic domain behavior 



This work was financially supported by the National Natural Science Foundation of China (No. 51401021).


  1. [1]
    Coey JMD, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. J Magn Magn Mater. 1990;87(3):L251.CrossRefGoogle Scholar
  2. [2]
    Katter M, Wecker J, Kuhrt C, Schultz L, Grössinger R. Structural and intrinsic magnetic properties of Sm2(Fe1−xCox)17Ny. J Magn Magn Mater. 1992;114(1–2):35.CrossRefGoogle Scholar
  3. [3]
    Iriyama T, Kobayashi K, Imaoka N, Fukuda T, Kato H, Nakagawa Y. Effect of nitrogen content on magnetic properties of Sm2Fe17Nx (0 < x < 6). IEEE Trans Magn. 1992;28(5):2326.CrossRefGoogle Scholar
  4. [4]
    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys. 1986;59(3):873.CrossRefGoogle Scholar
  5. [5]
    Prabhu D, Sepehri-Amin H, Mendis CL, Ohkubo T, Hono K, Sugimoto S. Enhanced coercivity of spark plasma sintered Zn-bonded Sm–Fe–N magnets. Scr Mater. 2012;67(2):153.CrossRefGoogle Scholar
  6. [6]
    Hirayama Y, Panda AK, Ohkubo T, Hono K. High coercivity Sm2Fe17N3 submicron size powder prepared by polymerized-complex and reduction–diffusion process. Scr Mater. 2016;120:27.CrossRefGoogle Scholar
  7. [7]
    Okada S, Suzuki K, Node E, Takagi K, Ozaki K, Enokido Y. Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction–diffusion process. J Alloys Compd. 2017;695:1617.CrossRefGoogle Scholar
  8. [8]
    Mao YJ, Jin JL, Xie JJ, Luo Y, Li KS, Yan WL, Yu DB. Structural transformation and magnetic properties of Sm–Fe alloys with V doping. Rare Met. 2015. Scholar
  9. [9]
    Yan WL, Luo Y, Yu DB, Wu GY, Quan NT, Yang YF, Peng HJ, Wang ZL. Structure and magnetic properties of melt-spun Sm–Fe–Nb ribbons and their nitrides. Rare Met. 2018;37(3):232.CrossRefGoogle Scholar
  10. [10]
    Zheng CJ, Luo Y, Yu DB, Wu GY, Quan NT, Yang YF, Peng HJ, Wang ZL. Structure and magnetic properties of TbCu7-type melt-spun Sm–Fe–B alloys. Rare Met. 2017. Scholar
  11. [11]
    Soda R, Takagi K, Jinno M, Yamaguchi W, Ozaki K. Anisotropic Sm2Fe17N3 sintered magnets without coercivity deterioration. AIP Adv. 2016;6(11):115.CrossRefGoogle Scholar
  12. [12]
    Saito T, Deguchi T, Yamamoto H. Magnetic properties of Sm–Fe–N bulk magnets produced from Cu-plated Sm–Fe–N powder. AIP Adv. 2017;7(5):056204.CrossRefGoogle Scholar
  13. [13]
    Matsuura M, Shiraiwa T, Tezuka N, Sugimoto S, Shoji T, Sakuma N, Haga K. High coercive Zn-bonded Sm–Fe–N magnets prepared using fine Zn particles with low oxygen content. J Magn Magn Mater. 2018;452:243.CrossRefGoogle Scholar
  14. [14]
    Otogawa K, Takagi K, Asahi T. Consolidation of Sm2Fe17N3 magnets with Sm-based eutectic alloy binder. J Alloys Compd. 2018;746:19.CrossRefGoogle Scholar
  15. [15]
    Suzuki S, Miura T. Magnetic properties of Sm2Fe17Nx powder and bonded magnet. IEEE Trans Magn. 1992;28(2):994.CrossRefGoogle Scholar
  16. [16]
    Kawamoto A, Ishikawa T, Yasuda S, Takeya K, Ishizaka K, Iseki T, Ohmori K. Sm2Fe17N3 magnet powder made by reduction and diffusion method. IEEE Trans Magn. 1999;35(5):3322.CrossRefGoogle Scholar
  17. [17]
    Saito T, Sato H, Takeishi H, Nakayama N. Anisotropic Sm–Fe–N magnets produced by compression shearing method. Appl Phys Lett. 2006;89(16):162511.CrossRefGoogle Scholar
  18. [18]
    Kou XC, Qiang WJ, Kronmüller H, Schultz L. Coercivity of Sm–Fe–N ferromagnets produced by the mechanical alloying technique. J Appl Phys. 1993;74(11):6791.CrossRefGoogle Scholar
  19. [19]
    Kobayashi K, Skomski R, Coey JMD. Dependence of coercivity on particle size in Sm2Fe17N3 powders. J Alloys Compd. 1995;222(1–2):1.CrossRefGoogle Scholar
  20. [20]
    Kobayashi K, Rao XL, Coey JMD, Givord D. Susceptibility and magnetization processes in Sm2Fe17N3 powders. J Appl Phys. 1996;80(11):6385.CrossRefGoogle Scholar
  21. [21]
    Kou XC. Coercivity of SmFeN permanent magnets produced by various techniques. J Alloys Compd. 1998;281(1):41.CrossRefGoogle Scholar
  22. [22]
    Pawlik P, Wyocki JJ, Kaszuwara W, Leonowicz M. Angular dependence of coercivity in Sm–Fe–N permanent magnets. J Magn Magn Mater. 2002;242–245:1344.CrossRefGoogle Scholar
  23. [23]
    Xing M, Han J, Wan F, Liu S, Wang C, Yang J, Yang Y. Preparation of anisotropic Sm2Fe17Nx magnetic materials by strip casting technique. IEEE Trans Magn. 2013;49(7):3248.CrossRefGoogle Scholar
  24. [24]
    Kou XC, Sinnecker EHCP, Grössinger R, Rodewald W, Kronmüller H. Magnetization reversal process of Zn-bonded anisotropic Sm–Fe–N permanent magnets. Phys Rev B. 1995;51(22):16025.CrossRefGoogle Scholar
  25. [25]
    Platts AE, Harris IR, Coey JMD. Improvement in the cast structure of Sm2Fe17 alloys by niobium additions. J Alloys Compd. 1992;185(2):251.CrossRefGoogle Scholar
  26. [26]
    Sinan SA, Edgley DS, Harris IR. Effect of additions of Nb to Sm2Fe17-based cast alloys. J Alloys Compd. 1995;226(1–2):170.CrossRefGoogle Scholar
  27. [27]
    Christodoulou CN, Takeshita T. Hydrogenation and nitrogenation of SmFe3. J Alloys Compd. 1993;191(2):279.CrossRefGoogle Scholar
  28. [28]
    Coey JMD, Skomski R, Wirth S. Gas phase interstitial modification of rare-earth intermetallics. IEEE Trans Magn. 1992;28(5):2332.CrossRefGoogle Scholar
  29. [29]
    Katter M, Wecker J, Kuhrt C, Schultz L, Grössinger R. Magnetic properties and thermal stability of Sm2Fe17Nx with intermediate nitrogen concentrations. J Magn Magn Mater. 1992;117(3):419.CrossRefGoogle Scholar
  30. [30]
    Xing M, Han J, Zhang Y, Liu S, Chen Z, Wang C, Yang J, Du H, Yang Y, Yue M. Nitrogenation effect of Sm2Fe17 alloys prepared by strip casting technique. J Appl Phys. 2015;117(17):17A732.CrossRefGoogle Scholar
  31. [31]
    Wendhausen PAP, Gebel B, Eckert D, Müller KH. Effect of milling on the magnetic and microstructural properties of Sm2Fe17Nx permanent magnets. J Appl Phys. 1994;75(10):6018.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations