Advertisement

Rare Metals

, Volume 38, Issue 3, pp 252–258 | Cite as

Electrospun and in situ self-polymerization of polyacrylonitrile containing gadolinium nanofibers for thermal neutron protection

  • Chun-Hong Wang
  • Li-Min Hu
  • Zhi-Feng Wang
  • Ming ZhangEmail author
Article
  • 44 Downloads

Abstract

In this work, the polyacrylonitrile containing gadolinium nanofibers for thermal neutron protection were successfully fabricated by electrospunning and followed by in situ self-polymerization. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) results show that there are no beads on the smooth surface of the nanofibers and gadolinium elements are uniformly dispersed in the matrix. The thermal analysis and FTIR results prove that gadolinium methacrylate is induced in situ self-polymerization during the heat treatment. The leaching rate of Gd3+ decreases from 79.97% to 10.74% tested by low-field nuclear magnetic resonance (LF-NMR) method after the self-polymerization of gadolinium methacrylate in the matrix when the nanofibers were immersed in water for 7 days. The thermal neutron shielding analysis calculated by MCNP program shows that above 99% thermal neutrons are absorbed when traveling through the 2-mm-thick polyacrylonitrile containing gadolinium nanofibers.

Keywords

Gadolinium Polyacrylonitrile Electrospinning In situ self-polymerization Thermal neutron shielding 

Notes

Acknowledgements

This study was financially supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYLX_1337) and the Excellent Doctorial Dissertations Fund of Yangzhou University.

Supplementary material

12598_2018_1042_MOESM1_ESM.docx (804 kb)
Supplementary material 1 (DOCX 804 kb)

References

  1. [1]
    Magda J, Cho SH, Streitmatter S, Jevremovic T. Effects of gamma rays and neutron irradiation on the glucose response of boronic acid-containing “smart” hydrogels. Polym Degrad Stab. 2014;99:219.CrossRefGoogle Scholar
  2. [2]
    Meng XT, Wang RP, Kang AG, Wang JL, Jia HY, Chen PY, Tsien P. Comparison of neutron irradiation effects on the electrical performances of SiGe HBT and Si BJT. Rare Met. 2003;22(1):69.Google Scholar
  3. [3]
    Tallman DJ, Hoffman EN, Caspi EN, Garcia-Diaz BL, Kohse G, Sindelar RL, Barsoum MW. Effect of neutron irradiation on select MAX phases. Acta Mater. 2015;85:132.CrossRefGoogle Scholar
  4. [4]
    Hasegawa A, Fukuda M, Nogami S, Yabuuchi K. Neutron irradiation effects on tungsten materials. Fusion Eng Des. 2014;89(7):1568.CrossRefGoogle Scholar
  5. [5]
    Pareige C, Kuksenko V, Pareige P. Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe–Cr alloys–Comparison to neutron irradiation. J Nucl Mater. 2015;456:471.CrossRefGoogle Scholar
  6. [6]
    Thibeault SA, Kang JH, Sauti G, Park C, Fay CC, King GC. Nanomaterials for radiation shielding. MRS Bull. 2015;40(10):836.CrossRefGoogle Scholar
  7. [7]
    Malkapur SM, Satdive H, Narasimhan MC, Karkera NB, Goverdhan P, Sathian V. Effect of mix parameters and hydrogen loading on neutron radiation shielding characteristics of latex modified concrete mixes. Prog Nucl Energy. 2015;83:8.CrossRefGoogle Scholar
  8. [8]
    Singh VP, Badiger NM. Gamma ray and neutron shielding properties of some alloy materials. Ann Nucl Energy. 2014;64(9):301.CrossRefGoogle Scholar
  9. [9]
    Kim J, Lee BC, Uhm YR, Miller WH. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites. J Nucl Mater. 2014;453(1):48.CrossRefGoogle Scholar
  10. [10]
    Wang W, Li Q, Li Q, Le G. A review of irradiation stability of lithium hydride neutron shielding material. Mater Sci Technol. 2016;32(5):434.Google Scholar
  11. [11]
    Hei DQ, Jiang Z, Jia WB, Cheng C, Wang HT, Li JT, Chen D. The background influence of cadmium detection in saline water using PGNAA technique. J Radioanal Nucl Chem. 2016;310(1):27.CrossRefGoogle Scholar
  12. [12]
    Cao XZ, Xue XX, Jiang T, Li ZF, Ding YF, Li Y, Yang H. Mechanical properties of UHMWPE/Sm2O3 composite shielding material. J Rare Earths. 2010;28(S1):482.CrossRefGoogle Scholar
  13. [13]
    D’Mellow B, Thomas DJ, Joyce MJ, Kolkowski P, Roberts NJ, Monk SD. The replacement of cadmium as a thermal neutron filter. Nucl Instrum Methods Phys Res Sect A. 2007;577(3):690.CrossRefGoogle Scholar
  14. [14]
    Akkurt I, El-Khayatt AM. The effect of barite proportion on neutron and gamma-ray shielding. Ann Nucl Energy. 2013;51:5.CrossRefGoogle Scholar
  15. [15]
    Li C, Lin J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem. 2010;20(33):6831.CrossRefGoogle Scholar
  16. [16]
    Guo P, Zhao XH, Xiong J, Liu XZ, Tao BW. Polymer assisted thick single-layer YBa2Cu3O7-δ films prepared with modified TFA-MOD method. Rare Met. 2014;33(5):594.CrossRefGoogle Scholar
  17. [17]
    Huang WC, Yuan J, Zhang JG, Liu JW. Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions. Rare Met. 2017;36(7):574.CrossRefGoogle Scholar
  18. [18]
    Schuetz P, Caruso F. Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem Mater. 2002;14(11):4509.CrossRefGoogle Scholar
  19. [19]
    Ma ZX, Zhang QT, Liu JL, Yan CH, Zhang M. Ohno Teruhisa. Preparation of luminescent polystyrene microspheres via surface-modified route with rare earth (Eu3+ and Tb3+) complexes linked to 2, 2′-bipyridine. Rare Met. 2015;34(8):590.CrossRefGoogle Scholar
  20. [20]
    Zhang H, Song HW, Yu HQ, Bai X, Li SW, Pan GH, Dai QL, Wang T, Li WL, Lu SZ, Ren XG, Zhao HF. Electrospinning preparation and photoluminescence properties of rare-earth complex/polymer composite fibers. J Phys Chem C. 2007;111(17):6524.CrossRefGoogle Scholar
  21. [21]
    Zhang H, Song HW, Yu HQ, Li SW, Bai X, Pan GH, Dai QL, Wang T, Li WL, Lu SZ, Ren XG, Zhao HF, Kong XG. Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning. Appl Phys Lett. 2007;90(10):103.CrossRefGoogle Scholar
  22. [22]
    Xiang HX, Niu YJ, Liao ZG, Chen W, Ji HQ, Sun B, Zhu MF. Photoluminescence emission of a stable and well-dispersed unsaturated polyester-co-rare-earth complex. J Appl Polym Sci. 2017;134(36):45253.CrossRefGoogle Scholar
  23. [23]
    Wang LH, Wang W, Zhang WG, Kang E, Huang W. Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(III)–acrylate–β-diketonate complex monomers and methyl methacrylate. Chem Mater. 2000;12(8):2212.CrossRefGoogle Scholar
  24. [24]
    Liu L, He L, Yang C, Zhang W, Jin RG, Zhang LQ. In situ reaction and radiation protection properties of Gd(AA)3/NR composites. Macromol Rapid Commun. 2004;25(12):1197.CrossRefGoogle Scholar
  25. [25]
    Singh VP, Shirmardi SP, Medhat ME, Badiger NM. Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum. 2015;119:284.CrossRefGoogle Scholar
  26. [26]
    Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer. 2005;46(13):4799.CrossRefGoogle Scholar
  27. [27]
    Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. Controlling the fiber diameter during electrospinning. Phys Rev Lett. 2003;90(14):144502.CrossRefGoogle Scholar
  28. [28]
    Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer. 2006;47(5):1597.CrossRefGoogle Scholar
  29. [29]
    Wen SP, Zhou Y, Yao L, Zhang LQ, Chan TW, Liang YR, Liu L. In situ self-polymerization of unsaturated metal methacrylate and its dispersion mechanism in rubber-based composites. Thermochim Acta. 2013;571:15.CrossRefGoogle Scholar
  30. [30]
    Petrochenkova NV, Bukvetskii BV, Mirochnik AG, Karasev VE. Lanthanide-containing monomers produced from unsaturated acids; synthesis, polymerization, and spectral and luminescent properties. Crystal structure of europium(III) methacrylate. Russ J Coord Chem. 2002;28(1):67.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
  2. 2.Testing CenterYangzhou UniversityYangzhouChina

Personalised recommendations