Rare Metals

pp 1–8 | Cite as

Structure and magnetic properties of nanocrystalline dysprosium powders

  • Hong-Jian Li
  • Qiong Wu
  • Ming YueEmail author
  • Yu-Qing Li
  • Rong-Chun Zhu
  • Jing-Ming Liang
  • Jiu-Xing Zhang


In this current study, nanocrystalline Dy powders were prepared by melt-spinning and subsequent high-energy ball-milling. The effect of ball-milling time on the structure and magnetic properties of the powders was studied. The crystal structure and microstructure of the melt-spun ribbons and ball-milled powders were observed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Magnetic measurement of all samples was performed with vibrating sample magnetometer (VSM). XRD results indicate that the average crystal grain size of the powders decreases from 90.09 nm of the ribbons to 10.42 nm of the 4-h ball-milled powders. Further TEM observation shows that the grains are fine and uniform. The Neel temperature (TN) decreases from 182 K of the ribbons to 172 K of the powders, while the Curie temperature (TC) increases from 100 to 130 K, demonstrating that the grain size has substantial influence on the magnetic transition process. Moreover, at 60 K, as the ball-milling time increases, the coercivity of the powders increases first, peaking at 0.48 T for 2-h milling, then drops again, while the remanence of the powders decreases monotonically. As a result, the powders milled for 2 h exhibit an optimal maximum energy product of 64.0 kJ·m−3, demonstrating the good potential of these powders as a permanent magnet at low temperatures.


Dysprosium Nanocrystalline Low temperature Magnetic properties 



This work was financially supported by the National Natural Science Foundation of China (Nos. 51401001, 51701109 and 51331003) and the International S&T Cooperation Program of China (No. 2015DFG52020).


  1. [1]
    Shevchenko NB, Christodoulides JA, Hadjipanayis GC. Preparation and characterization of Dy nanoparticles. Appl Phys Lett. 1999;74(10):1478.CrossRefGoogle Scholar
  2. [2]
    Darnell FJ, Moore EP. Crystal structure of dysprosium at low temperatures. J Appl Phys. 1963;34(4):1337.CrossRefGoogle Scholar
  3. [3]
    Chernyshov AS. Magnetothermal properties of single crystal dysprosium. AIP Conf Proc. 2002;614(19):19.CrossRefGoogle Scholar
  4. [4]
    Jena RP, Lakhani A. Study of magnetoresistance in the supercooled state of Dy-Y alloys. J Magn Magn Mater. 2018;448:367.CrossRefGoogle Scholar
  5. [5]
    Yue M, Wang KJ, Liu WQ, Zhang DT, Zhang JX. Structure and magnetic properties of bulk nanocrystalline Dy metal prepared by spark plasma sintering. Appl Phys Lett. 2008;93(20):202501.CrossRefGoogle Scholar
  6. [6]
    Astrom HUBG. Magnetic transitions in dysprosium: a calorimetric study. J Phys, F: Met Phys. 1998;18(9):2113.CrossRefGoogle Scholar
  7. [7]
    Elliott JF, Legvold S, Spedding FH. Some magnetic properties of Dy metal. Phys Rev. 1954;94(5):1143.CrossRefGoogle Scholar
  8. [8]
    Chernyshov AS, Tsokol AO, Tishin AM, Gschneidner KA, Pecharsky VK. Magnetic and magnetocaloric properties and the magnetic phase diagram of single-crystal dysprosium. Phys Rev B. 2005;71(18):184410.CrossRefGoogle Scholar
  9. [9]
    Liu XG, Or SW, Li B, Ou ZQ, Zhang L, Zhang Q, Geng DY, Yang F, Li D, Brück E, Zhang ZD. Magnetic properties of Dy nanoparticles and Al2O3-coated Dy nanocapsules. J Nanoparticle Res. 2010;13(3):1163.CrossRefGoogle Scholar
  10. [10]
    Swift WM, Mathur MP. Cryogenic magnetic-properties of secondary recrystallized thin sheet dysprosium. IEEE Trans Magn. 1974;10(2):308.CrossRefGoogle Scholar
  11. [11]
    Li XH, Lou L, Song WP, Zhang Q, Huang GW, Hua YX, Zhang HT, Xiao JW, Wen B, Zhang XY. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products. Nano Lett. 2017;17(5):2985.CrossRefGoogle Scholar
  12. [12]
    Li XH, Lou L, Song WP, Huang GW, Hou FC, Zhang Q, Zhang HT, Xiao JW, Wen B, Zhang XY. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv Mater. 2017;29(16):1606430.CrossRefGoogle Scholar
  13. [13]
    Li HL, Lou L, Hou FC, Guo DF, Li W, Li XH, Gunderov DV, Sato K, Zhang XY. Simultaneously increasing the magnetization and coercivity of bulk nanocomposite magnets via severe plastic deformation. Appl Phys Lett. 2013;103(14):142406.CrossRefGoogle Scholar
  14. [14]
    Li HL, Li XH, Guo DF, Lou L, Li W, Zhang XY. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets. Nano Lett. 2016;16(9):5631.CrossRefGoogle Scholar
  15. [15]
    Liu Y, Xu L, Wang Q, Li W, Zhang X. Development of crystal texture in Nd-lean amorphous Nd9Fe85B6 under hot deformation. Appl Phys Lett. 2009;94(17):172502.CrossRefGoogle Scholar
  16. [16]
    Wang HY, Pan JF, Wang Y, Jiang MQ, Liu XC, Pan J. Orientation degree and coercive force mechanism of die-upset (Nd, Pr)-Fe-Nb-B magnets. Chin J Rare Met. 2017;41(6):641.Google Scholar
  17. [17]
    Zhu K, Hou YL. Controllable synthesis of rare-earth based permanent magnetic nanomaterials and their magnetic properties. Chin J Rare Met. 2017;41(5):466.Google Scholar
  18. [18]
    Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP. Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys. 2006;99(8):08E912.CrossRefGoogle Scholar
  19. [19]
    Akdogan NG, Hadjipanayis GC, Sellmyer DJ. Anisotropic PrCo5 nanoparticles by surfactant-assisted ball milling. IEEE Trans Magn. 2009;45(10):4417.CrossRefGoogle Scholar
  20. [20]
    Zhang LJ, Guo XP. Mechanical alloying behavior of Nb–Ti–Si-based alloy made from elemental powders by ball milling process. Rare Met. 2017;36(3):174.CrossRefGoogle Scholar
  21. [21]
    Hannachi E, Hamrita A, Slimani Y, Ben Salem MK, Zouaoui M, Ben Salem M, Azzouz B. Effect of the ball-milling technique on the transport current density of polycrystalline superconductor YBa2Cu3Oy-pinning mechanism. J Supercond Novel Magn. 2014;28(2):493.CrossRefGoogle Scholar
  22. [22]
    Hannachi E, Slimani Y, Ben Salem MK, Hamrita A, Al-Otaibi AL, Almessiere MA, Ben Salem M, Azzouz FB. Fluctuation induced conductivity studies in YBa2Cu3Oy compound embedded by superconducting nanoparticles Y-deficient YBa2Cu3Oy: effect of silver inclusion. Indian J Phys. 2016;90(9):1009.CrossRefGoogle Scholar
  23. [23]
    Slimani Y, Hannachi E, Azzouz FB, Salem MB. Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics. 2018;92:5.CrossRefGoogle Scholar
  24. [24]
    Slimani Y, Hannachi E, Hamrita A, Ben Salem MK, Ben Azzouz F, Manikandan, Ben Salem M. Comparative investigation of the ball milling role against hand grinding on microstructure, transport and pinning properties of Y3Ba5Cu8O18±δ and YBa2Cu3O7-δ. Ceram Int. 2018;44(16); 19950.Google Scholar
  25. [25]
    Slimani Y, Hannachi E, Zouaoui M, Azzouz FB, Salem MB. Excess conductivity investigation of Y3Ba5Cu8O18±δ superconductors prepared by various parameters of planetary ball milling technique. J Supercond Novel Magn. 2017;31(8):2339.CrossRefGoogle Scholar
  26. [26]
    Hannachi E, Ben Salem MK, Slimani Y, Hamrita A, Zouaoui M, Ben Azzouz F, Salem MB. Dissipation mechanisms in polycrystalline YBCO prepared by sintering of ball-milled precursor powder. Phys B. 2013;430:52.CrossRefGoogle Scholar
  27. [27]
    Hamrita A, Slimani Y, Ben Salem MK, Hannachi E, Bessais L, Ben Azzouz F, Ben Salem M. Superconducting properties of polycrystalline YBa2Cu3O7-δ prepared by sintering of ball-milled precursor powder. Ceram Int. 2014;40(1):1461.CrossRefGoogle Scholar
  28. [28]
    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du PX, Song HZ. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, rietveld, and full pattern summation methods: a critical review. Solid Earth Sci. 2018;3(1):16.CrossRefGoogle Scholar
  29. [29]
    Jozanikohan G, Sahabi F, Norouzi GH, Memarian H, Moshiri B. Quantitative analysis of the clay minerals in the Shurijeh Reservoir Formation using combined X-ray analytical techniques. Russ Geol Geophys. 2016;57(7):1048.CrossRefGoogle Scholar
  30. [30]
    Khorsand Zak A, Abd. Majid WH, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011;13(1):251.CrossRefGoogle Scholar
  31. [31]
    Venkateswarlu K, Bose AC, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys B Condens Matter. 2010;405(20):4256.CrossRefGoogle Scholar
  32. [32]
    Lima FM, Martins FM, Maia Júnior PHF, Almeida AFL, Freire FNA. Nanostructured titanium dioxide average size from alternative analysis of Scherrer’s equation. Revista Materia. 2018. Scholar
  33. [33]
    Smilgies DM. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J Appl Crystallogr. 2009;42(Pt 6):1030.CrossRefGoogle Scholar
  34. [34]
    Zhang F, Liu Y, Li J, Wang R. Ultrafine nanocrystalline NdFeB prepared by cryomilling with HDDR process. J Alloys Compd. 2018;750:401.CrossRefGoogle Scholar
  35. [35]
    He K, Chen N, Wang C, Wei L, Chen J. Method for determining crystal grain size by X-ray diffraction. Cryst Res Technol. 2018;53(2):1700157.CrossRefGoogle Scholar
  36. [36]
    Kwon HWLJ, Yu JH. Coercivity of Nd–Fe–B-type fine particles prepared by mechanical milling of HDDR material. IEEE Trans Magn. 2013;50(1):2100604.Google Scholar
  37. [37]
    Rajender G, Giri PK. Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling. J Alloys Compd. 2016;676:591.CrossRefGoogle Scholar
  38. [38]
    Su KP, Wang J, Wang HO, Huo DX, Li LW, Cao YQ, Liu ZW. Strain-induced coercivity enhancement in Mn51Al46C3 flakes prepared by surfactant-assisted ball milling. J Alloys Compd. 2015;640:114.CrossRefGoogle Scholar
  39. [39]
    Yue M, Li YQ, Liu RM, Liu WQ, Guo ZH, Li W. Abnormal size-dependent coercivity in ternary Sm–Fe–N nanoparticles. J Alloys Compd. 2015;637:297.CrossRefGoogle Scholar
  40. [40]
    Wang YQ, Yue M, Wu D, Zhang DT, Liu WQ, Zhang HG, Du YH. Effect of Cu redistribution in grain boundary on magnetic properties of Sm(Co0.665Fe0.25Cu0.06Zr0.025)7 permanent magnets. J Alloys Compd. 2018;741:495.CrossRefGoogle Scholar
  41. [41]
    Yue M, Wang YP, Poudyal N, Rong CB, Liu JP. Preparation of Nd–Fe–B nanoparticles by surfactant-assisted ball milling technique. J Appl Phys. 2009;105(7):07A708.CrossRefGoogle Scholar
  42. [42]
    Zhang DK, Zhao L, Zhang HG, Xu MF, Yue M. The magnetic properties and magnetocaloric effect in LaFe11.5Al1.5Bx compounds. J Alloys Compd. 2014;591:143.CrossRefGoogle Scholar
  43. [43]
    Liu FY, Hou BH, Yue M, W KJ. Magnetic phase transition of nanocrystalline bulk metal gadolinium and dysprosium. J Chin Rare Earth Soc. 2011;29(1):36.Google Scholar
  44. [44]
    Rhyne JJ, Foner S, McNiff EJ, Doclo R. Rare earth metal single crystals. I. High-field properties of Dy, Er, Ho, Tb, and Gd. J Appl Phys. 1968;39(2):892.CrossRefGoogle Scholar
  45. [45]
    Coey JMD. Hard magnetic materials: a perspective. IEEE Trans Magn. 2011;47(12):4671.CrossRefGoogle Scholar
  46. [46]
    Rhyne JJ, Clark AE. Magnetic anisotropy of terbium and dysprosium. J Appl Phys. 1967;38(3):1379.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of ChinaBeijing University of TechnologyBeijingChina

Personalised recommendations