Rare Metals

, Volume 38, Issue 1, pp 14–19 | Cite as

Magnetic properties of α-Fe2O3 nanopallets

  • Ying-Ying Xu
  • Long WangEmail author
  • Tong Wu
  • Rong-Ming Wang


It is the result of a systemic study about uniform hematite nanopallets with length of about 100 nm, width of about 30 nm, and thickness of less than 10 nm. The sample has superparamagnetic (SPM) properties above the blocking temperature of ~16 K. The temperature dependence of magnetization was well fitted by Bloch T3/2 law considering the dipolar interaction of the particles. The field dependence of magnetization was fitted with revised Langevin equation. The magnetization of the weak ferromagnetic (WF) canted spins contributes to the linear portion in the high field region; the surface uncompensated spins and the parasitic ferromagnetic moments due to the canted spins both contribute to the particle moments and the superparamagnetic behavior.


α-Fe2O3 nanopallets Magnetic property Superparamagnetic behavior Canted spins 



This study was financially supported by the National Natural Science Foundation of China (Nos. 11674023, 51371015, 51331002, and 51501004) and Beijing Municipal Science and Technology Project (No. Z17111000220000).


  1. [1]
    Cao X, Wang N, Jia S, Shao Y. Detection of glucose based on bimetallic PtCu nanochains modified electrodes. Anal Chem. 2013;85(10):5040.CrossRefGoogle Scholar
  2. [2]
    Cao X, Han Y, Gao C, Xu Y, Huang X, Willander M, Wang N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy. 2014;9:301.CrossRefGoogle Scholar
  3. [3]
    Cao X, Wang N, Han Y, Gao C, Xu Y, Li M, Shao Y. PtAg bimetallic nanowires: facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy. 2015;12:105.CrossRefGoogle Scholar
  4. [4]
    Wang N, Han Y, Xu Y, Gao C, Cao X. Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem. 2015;87(1):457.CrossRefGoogle Scholar
  5. [5]
    Wang N, Xu Y, Han Y, Gao C, Cao X. Mesoporous Pd@M (M = Pt, Au) microrods as excellent electrocatalysts for methanol oxidation. Nano Energy. 2015;17:111.CrossRefGoogle Scholar
  6. [6]
    Shan AX, Wu X, Lu J, Chen CP, Wang RM. Phase formations and magnetic properties of single crystal nickel ferrite (NiFe2O4) with different morphologies. CrystEngComm. 2015;17(7):1603.CrossRefGoogle Scholar
  7. [7]
    Su X, Gao C, Cheng M, Wang R. Controllable synthesis of Ni(OH)(2)/Co(OH)(2) hollow nanohexagons wrapped in reduced graphene oxide for supercapacitors. RSC Adv. 2016;6(99):97172.CrossRefGoogle Scholar
  8. [8]
    Duan SB, Wang RM. Controlled growth of Au/Ni bimetallic nanocrystals with different nanostructures. Rare Met. 2017;36(4):229.CrossRefGoogle Scholar
  9. [9]
    Zhang ZM, Gao CT, Li YX, Han WH, Fu WB, He YM, Xie EQ. Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting. Nano Energy. 2016;30:892.CrossRefGoogle Scholar
  10. [10]
    Cao X, Xu YJ, Wang N. Hollow Fe2O3 polyhedrons: one-pot synthesis and their use as electrochemical material for nitrite sensing. Electrochim Acta. 2012;59:81.CrossRefGoogle Scholar
  11. [11]
    Cao X, Wang N. A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst. 2011;136(20):4241.CrossRefGoogle Scholar
  12. [12]
    Scialabba C, Puleio R, Peddis D, Varvaro G, Calandra P, Cassata G, Cicero L, Licciardi M, Giammona G. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 2017;. doi: 10.1007/s12274-017-1540-4.Google Scholar
  13. [13]
    Tamion A, Hillenkamp M, Hillion A, Maraloiu VA, Vlaicu ID, Stefan M, Ghica D, Rositi H, Chauveau F, Blanchin M-G, Wiart M, Dupuis V. Ferritin surplus in mouse spleen 14 months after intravenous injection of iron oxide nanoparticles at clinical dose. Nano Res. 2016;9(8):2398.CrossRefGoogle Scholar
  14. [14]
    Hung WH, Peng CJ, Yang CR, Li CJ, Shyue JJ, Chang PC, Tseng CM, Juan PC. Exploitation of a spontaneous spatial charge separation effect in plasmonic polyhedral alpha-Fe2O3 nanocrystal photoelectrodes for hydrogen production. Nano Energy. 2016;30:523.CrossRefGoogle Scholar
  15. [15]
    Sang XL, Li KZ, Wang H, Wei YG. Selective oxidation of methane and carbon deposition over Fe2O3/Ce1-xZrxO2 oxides. Rare Met. 2014;33(2):230.CrossRefGoogle Scholar
  16. [16]
    Xu YY, Dong Z, Zhang H. Synthesis of Fe-group metal oxide nanostructures by thermal oxidation and their magnetic properties. J Nanosci Nanotechnol. 2012;12(2):1114.CrossRefGoogle Scholar
  17. [17]
    Morrish AH. Canted Antiferromagnetism. Hematite, edited. London: World Scientific; 1995. 129.CrossRefGoogle Scholar
  18. [18]
    Xiong S, Xu J, Chen D, Wang RM, Hu XL, Shen GZ, Wang ZL. Controlled synthesis of monodispersed hematite microcubes and their properties. CrystEngComm. 2011;13(23):7114.CrossRefGoogle Scholar
  19. [19]
    Xu YY, Rui XF, Fu YY, Zhang H. Magnetic properties of alpha-Fe2O3 nanowires. Chem Phys Lett. 2005;410(1–3):36.CrossRefGoogle Scholar
  20. [20]
    Fu YY, Wang RM, Xu J, Chen J, Yan Y, Narlikar A, Zhang H. Synthesis of large arrays of aligned alpha-Fe2O3 nanowires. Chem Phys Lett. 2003;379(3–4):373.CrossRefGoogle Scholar
  21. [21]
    Xu YY, Dong Z, Zhang XJ, Jin WT, Kashkarov P, Zhang H. Synthesis and characterization of single-crystalline alpha-Fe2O3 nanoleaves. Physica E. 2009;41(5):806.CrossRefGoogle Scholar
  22. [22]
    Amin N, Arajs S. Morin temperature of annealed submicronic alpha-Fe2O3 particles. Phys Rev B. 1987;35(10):4810.CrossRefGoogle Scholar
  23. [23]
    Morin FJ. Magnetic susceptibility of alpha-Fe2O3 and alpha-Fe2O3 with added titanium. Phys Rev. 1950;78(6):819.CrossRefGoogle Scholar
  24. [24]
    Shull CG, Strauser WA, Wollan EO. Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys Rev. 1951;83(2):333.CrossRefGoogle Scholar
  25. [25]
    Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Ann Geophys. 1949;5(2):99.Google Scholar
  26. [26]
    Rehman S, Yang W, Liu F, Hong Y, Wang T, Hou Y. Facile synthesis of anisotropic single crystalline α-Fe2O3 nanoplates and their facet-dependent catalytic performance. Inorg Chem Front. 2015;2(6):576.CrossRefGoogle Scholar
  27. [27]
    Wu W, Hao R, Liu F, Su X, Hou Y. Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. J Mater Chem A. 2013;1(23):6888.CrossRefGoogle Scholar
  28. [28]
    Nininger RC, Schroeer D. Mossbauer studies of Morin transition in bulk and microcrystalline alpha-Fe2O3. J Phys Chem Solids. 1978;39(2):137.CrossRefGoogle Scholar
  29. [29]
    Zitoun D, Respaud M, Fromen MC, Casanove MJ, Lecante P, Amiens C, Chaudret B. Magnetic enhancement in nanoscale CoRh particles. Phys Rev Lett. 2002;89(3):037203.CrossRefGoogle Scholar
  30. [30]
    Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A. Magnetic properties of alpha-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater. 2005;285(1–2):296.CrossRefGoogle Scholar
  31. [31]
    Néel L. Low-Temperature Physics. In: DeWitt C, Dreyfus B, DeGennes PG, editors. London: Gordon and Breach. 1962. 411.Google Scholar
  32. [32]
    Bodker F, Hansen MF, Koch CB, Lefmann K, Morup S. Magnetic properties of hematite nanoparticles. Phys Rev B. 2000;61(10):6826.CrossRefGoogle Scholar
  33. [33]
    Carpenter EE. Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater. 2001;225(1–2):17.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Equipment ManufactureZhongshan Torch PolytechnicZhongshanChina
  3. 3.Division of Energy and Environmental MeasurementNational Institute of MetrologyBeijingChina

Personalised recommendations