Rare Metals

, Volume 36, Issue 3, pp 183–187 | Cite as

Thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nd addition



By the minor addition of Nb to a Mg–Cu–Ag–Gd alloy, a Mg–Cu–Ag–Gd–Nb bulk metallic glass (BMG) with improved thermal stability and corrosion resistance as well as good mechanical properties was developed. Mg54Cu26.5Ag8.5Gd11−x Nb x (x = 0, 1) BMGs with a diameter of 2 mm were fabricated by copper-mold casting. The Mg54Cu26.5Ag8.5Gd10Nb1 BMG exhibits enlarged supercooled liquid region of 58 K. Electrochemical measurements indicate that the addition of Nb improves the corrosion resistance of the Mg-based BMG in NaCl solution evidenced by the increased corrosion potential, though no significant effect of Nb on the corrosion behavior of the BMG in NaOH solution is observed. The Mg–Cu–Ag–Gd–Nb BMG also shows high compressive strength up to 890 MPa and elastic strain of about 1.9%.


Mg-based alloy Metallic glass Thermal stability Mechanical properties Corrosion resistance 



This work was financially supported by the Natural Science Foundation of Beijing (No. 2132045).


  1. [1]
    Suryanarayana C, Inoue A. Bulk Metallic Glasses. Boca Raton: CRC Press; 2011. 57.Google Scholar
  2. [2]
    Greer AL. Metallic glasses. Science. 1995;267(5206):416.CrossRefGoogle Scholar
  3. [3]
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279.CrossRefGoogle Scholar
  4. [4]
    Inoue A, Ohtera K, Kita K, Masumoto T. New amorphous Mg–Ce–Ni alloys with high strength and good ductility. J Appl Phys. 1988;27(12):2248.CrossRefGoogle Scholar
  5. [5]
    Inoue A. Amorphous, quasicrystalline and nanocrystalline alloys in Al- and Mg-based systems. Handb Phys Chem Rare Earths. 1997;24:83.CrossRefGoogle Scholar
  6. [6]
    Johnson WL. Bulk amorphous metal: an emerging engineering material. J Miner Metals Mater Soc. 2002;54(3):40.CrossRefGoogle Scholar
  7. [7]
    Ma H, Shi LL, Xu J, Li Y. Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl Phys Lett. 2005;87(18):181915.CrossRefGoogle Scholar
  8. [8]
    Zheng Q, Cheng S, Strader JH, Ma E, Xu J. Critical size and strength of the best bulk metallic glass former in the Mg–Cu–Gd ternary system. Scripta Mater. 2007;56(2):161.CrossRefGoogle Scholar
  9. [9]
    Suryanarayana C, Inoue A. Bulk metallic glasses. Science. 2013;321(2–3):45.Google Scholar
  10. [10]
    Matias TB, Roche V, Nogueira RP, Asato GH, Kiminami CS, Bolfarini C, Botta WJ, Jorge AM Jr. Mg–Zn–Ca amorphous alloys for application as temporary implant: effect of Zn content on the mechanical and corrosion properties. Mater Des. 2016;110:188.Google Scholar
  11. [11]
    Pan DG, Liu WY, Zhang HF, Wang AM, Hu ZQ. Mg–Cu–Ag–Gd–Ni bulk metallic glass with high mechanical strength. J Alloy Compd. 2007;438(1–2):142.CrossRefGoogle Scholar
  12. [12]
    Park ES, Kim WT, Kim DH. Bulk glass formation in Mg–Cu–Ag–Y–Gd alloy. Mater Trans. 2004;45(7):2474.CrossRefGoogle Scholar
  13. [13]
    Zhao P, Li SS, Gao GH, Bai BZ, Misra RDK. Mechanical behavior of carbon nanotube-reinforced Mg–Cu–Gd–Ag bulk metallic glasses. Mater Sci Eng, A. 2015;641:116.CrossRefGoogle Scholar
  14. [14]
    Zheng Q, Xu J, Ma E. High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J Appl Phys. 2007;102(11):113519.CrossRefGoogle Scholar
  15. [15]
    Ashby MF, Greer AL. Metallic glasses as structural materials. Scripta Mater. 2006;54(3):321.CrossRefGoogle Scholar
  16. [16]
    Zhang XL, Chen G, Bauer T. Mg-based bulk metallic glass composite with high bio-corrosion resistance and excellent mechanical properties. Intermetallics. 2012;29(5):56.CrossRefGoogle Scholar
  17. [17]
    Babilas R, Bajorek A, Simka W, Babilas D. Study on corrosion behavior of Mg-based bulk metallic glasses in NaCl solution. Electrochim Acta. 2016;209:632.CrossRefGoogle Scholar
  18. [18]
    Zhang CM, Hui X, Li ZG, Chen GL. Improving the strength and the toughness of Mg–Cu–(Y, Gd) bulk metallic glass by minor addition of Nb. J Alloy Compd. 2009;467(1):241.CrossRefGoogle Scholar
  19. [19]
    Cao QP, Peng S, Zhao XN, Wang XD, Zhang DX, Jiang JZ. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr–Cu–Ag–Al–Be bulk metallic glass. J Alloy Compd. 2016;683:22.CrossRefGoogle Scholar
  20. [20]
    Suo ZY, Qiu KQ, Li QF, Ren YL, Hu ZQ. Effect of Nb on glass forming ability and plasticity of (Ti–Cu)-based bulk metallic glasses. Mater Sci Eng, A. 2010;527(10–11):2486.CrossRefGoogle Scholar
  21. [21]
    Pang SJ, Zhang T, Asami K, Inoue A. Formation, corrosion behavior, and mechanical properties of bulk glassy Zr–Al–Co–Nb alloys. J Mater Res. 2003;18(7):1652.CrossRefGoogle Scholar
  22. [22]
    Pang SJ, Zhang T, Kimura H, Asami K, Inoue A. Corrosion behavior of Zr–(Nb–)Al–Ni–Cu glassy alloys. Mater Trans. 2000;14(11):1490.CrossRefGoogle Scholar
  23. [23]
    Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys. J Non-Cryst Solids. 1993;156(2):473.CrossRefGoogle Scholar
  24. [24]
    Inoue A. Solidification analyses of bulky Zr60Al10Ni10Cu15Pd5 glass produced by casting into wedge-shape copper mold. Mater Trans, JIM. 1995;36(10):1276.CrossRefGoogle Scholar
  25. [25]
    Inoue A, Zhang T. Novel superplasticity of supercooled liquid for bulk amorphous alloys. Mater Sci Forum. 1997;243:197.Google Scholar
  26. [26]
    Raju VR, Kühn U, Wolff U, Schneider F, Eckert J, Reiche R, Gebert A. Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater Lett. 2002;57(1):173.CrossRefGoogle Scholar
  27. [27]
    Cao QP, Peng S, Zhao XN, Wang XD, Zhang DX, Jiang JZ. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr–Cu–Ag–Al–Be bulk metallic glass. J Alloy Compd. 2016;683:22.CrossRefGoogle Scholar
  28. [28]
    Wang WH. Elastic moduli and behaviors of metallic glasses. J Non-Cryst Solids. 2005;351(351):1481.CrossRefGoogle Scholar
  29. [29]
    Wang WH. Correlations between elastic moduli and properties in bulk metallic glasses. J Appl Phys. 2006;99(9):093506.CrossRefGoogle Scholar
  30. [30]
    Lewandowski JJ, Shazly M, Nouri AS. Intrinsic and extrinsic toughening of metallic glasses. Scripta Mater. 2006;54(3):337.CrossRefGoogle Scholar
  31. [31]
    Cheng YQ, Cao AJ, Ma E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: the roles of atomic configuration and alloy composition. Acta Mater. 2009;57(11):3253.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations