Rare Metals

, Volume 37, Issue 12, pp 1021–1026 | Cite as

Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique

  • Zhen-Hui Ma
  • Tian-Li Zhang
  • Hui WangEmail author
  • Cheng-Bao Jiang


SmCo5 nanoparticles (NPs) have promising applications in high-density magnetic storage and magnetic nanocomposites. In this work, A novel method to yield SmCo5 particles with small size and high coercivity was reported. Firstly, Sm2O3–Co NPs with size of 6–15 nm were fabricated by a solvothermal route. Then the agglomerated SmCo5 particles were obtained by thermal reduction of the precursor, which show high coercivity of 2.0 T at room temperature. At last, the as-synthesized SmCo5 particles were further hydrogenated under high hydrogen pressure of 4 MPa at room temperature, where hydrogen absorption process could form small-sized SmCo5H x particles due to their lattice expansion and hydrogen desorption process could convert SmCo5H x NPs into SmCo5 NPs. The prepared SmCo5 NPs after hydrogenation, showing well distribution, have a small size of 5–20 nm and room temperature coercivity of 1.22 T.


SmCo5 Nanoparticles Hydrogenation Coercivity 



This study was financially supported by the National Natural Science Foundations of China (Nos. 51471016 and 51520105002) and the Key Natural Science Foundation of Beijing (No. 2151002).


  1. [1]
    Sun SH. Recent Advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):393.CrossRefGoogle Scholar
  2. [2]
    Rutledge RD, Morris WH, Wellons MS, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Formation of FePt nanoparticles having high coercivity. J Am Chem Soc. 2006;128(44):14210.CrossRefGoogle Scholar
  3. [3]
    Balasubramanian B, Das B, Skomski R, Zhang WY, Sellmyer DJ. Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv Mater. 2013;25(42):6090.CrossRefGoogle Scholar
  4. [4]
    Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729.CrossRefGoogle Scholar
  5. [5]
    Cui WB, Takahashi YK, Hono K. Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv Mater. 2013;25(14):6530.CrossRefGoogle Scholar
  6. [6]
    Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. catechol-based biomimetic functional materials. Adv Mater. 2013;25(5):653.CrossRefGoogle Scholar
  7. [7]
    Zhang DT, Wang PF, Yue M, Liu WQ, Zhang JX, Sundararajan JA. High-temperature magnetic properties of anisotropic MnBi/NdFeB hybrid bonded magnets. Rare Met. 2016;35(6):471.CrossRefGoogle Scholar
  8. [8]
    Zeng H, Li J, Wang ZL, Liu JP, Sun S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 2002;420(6914):395.CrossRefGoogle Scholar
  9. [9]
    Liu Y, te Velthuis SGE, Jiang JS, Choi Y, Bader SD. Parizzi AA (2011) Magnetic structure in Fe/Sm–Co exchange spring bilayers with intermixed interfaces. Phys. Rev. B. 2011;83(17):100.Google Scholar
  10. [10]
    Strnat KJ. In: Wohlfarth EP, Buschow KHJ (eds) Ferromagnetic Materials, Vol 4. Chapter 2: Rare Earth Cobalt Permanent Magnets. Amsterdam: North-Holland; 1988. 131.Google Scholar
  11. [11]
    Larson P, Mazin II, Papaconstantopoulos DA. Calculation of magnetic anisotropy energy in SmCo5. Phys Rev B: Condens Matter. 2003;67(21):214405–11.CrossRefGoogle Scholar
  12. [12]
    Li WF, Gabay AM, Hu XC, Ni C, Hadjipanayis GC. Fabrication and microstructure evolution of single crystalline Sm2Co17 nanoparticles prepared by mechanochemical method. J Phys Chem C. 2013;117(20):10291.CrossRefGoogle Scholar
  13. [13]
    Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele JU, Doerner MF. High K u materials approach to 100 Gbits/in2. IEEE Trans Magn. 2000;36(1):10.CrossRefGoogle Scholar
  14. [14]
    Wang JP. FePt magnetic nanoparticles and their assembly for future magnetic media. Proc IEEE. 2008;96(11):1847.CrossRefGoogle Scholar
  15. [15]
    Piramanayagam SN, Srinivasan K. Recording media research for future hard disk drives. J Magn Magn Mater. 2009;321(6):485.CrossRefGoogle Scholar
  16. [16]
    Rong CB, Zhang HW, Chen RJ, Shen BG, He SL. Micromagnetic investigation on the coercivity mechanism of the SmCo5/Sm2Co17 high-temperature magnets. J Appl Phys. 2006;100(12):123913.CrossRefGoogle Scholar
  17. [17]
    Shen Y, Leontsev S, Sheets AO, Horwath JC. Turgut. Z. Effect of flake thickness on coercivity of nanocrystalline SmCo5 bulk prepared from anisotropic nanoflake powder. AIP Adv. 2016;6(5):49.CrossRefGoogle Scholar
  18. [18]
    Sun W, Zhu MG, Fang YK, Liu ZY, Guo ZH, Li W. Microstructures and coercivity mechanism of 2:17-type Sm–Co magnets with high remanence. Rare Met. 2015;. doi: 10.1007/s12598-015-0513-6.CrossRefGoogle Scholar
  19. [19]
    Gu H, Xu B, Rao J, Zheng RK, Zhang XX, Fung KK, Wong YCC. Chemical synthesis of narrowly dispersed SmCo5 nanoparticles. J Appl Phys. 2003;93(93):7589.CrossRefGoogle Scholar
  20. [20]
    Matsushita T, Iwamoto T, Inokuchi M, Toshima N. Novel ferromagnetic materials of SmCo5 nanoparticles in single-nanometer size: chemical syntheses and characterizations. Nanotechnology. 2010;21(9):095603.CrossRefGoogle Scholar
  21. [21]
    Tian J, Zhang S, Qu X, Pan D, Zhang M. Co-reduction synthesis of uniform ferromagnetic SmCo nanoparticles. Mater Lett. 2012;68(2):212.CrossRefGoogle Scholar
  22. [22]
    Matsushita T, Masuda J, Iwamoto T, Toshima N. Fabrication of SmCox nanoparticles as a potential candidate of materials for super-high-density magnetic memory: use of gold as the third element. Chem Lett. 2007;36(10):1264.CrossRefGoogle Scholar
  23. [23]
    Chinnasamy CN, Huang JY, Lewis LH, Latha B, Vittoria C, Harris VG. Direct chemical synthesis of high coercivity SmCo nanoblades. Appl Phys Lett. 2008;93(3):032505.CrossRefGoogle Scholar
  24. [24]
    Hou Y, Xu Z, Peng S, Rong C, Liu J, Sun S. A facile synthesis of SmCo5 magnets from core/shell Co/Sm2O3 nanoparticles. Adv Mater. 2007;19(20):3349.CrossRefGoogle Scholar
  25. [25]
    Chaubey GS, Poudyal N, Liu Y, Rong C, Liu JP. Synthesis of Sm–Co and Sm–Co/Fe nanocrystals by reductive annealing of nanoparticles. J Alloys Compd. 2011;509(5):2132.CrossRefGoogle Scholar
  26. [26]
    Suresh G, Saravanan P, Rajan Babu D. Effect of annealing on phase composition, structural and magnetic properties of Sm–Co based nanomagnetic material synthesized by sol–gel process. J Magn Magn Mater. 2012;324(324):2158.CrossRefGoogle Scholar
  27. [27]
    Ma ZH, Zhang TL, Jiang CB. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng J. 2015;264:610.CrossRefGoogle Scholar
  28. [28]
    Hou YL, Sun SH. SmCo5/Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Appl Phys Lett. 2007;91(15):153117.CrossRefGoogle Scholar
  29. [29]
    Yang C, Jia L, Wang S, Gao C, Shi DW, Hou YL, Gao S. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: a novel chemical approach. Sci Rep. 2013;3:354.Google Scholar
  30. [30]
    Zhang H, Peng S, Rong C, Liu J, Zhang Y, Kramer M, Sun S. Chemical synthesis of hard magnetic SmCo nanoparticles. J Mater Chem. 2011;21(42):16873.CrossRefGoogle Scholar
  31. [31]
    Ma ZH, Zhang TL, Jiang CB. Exchange-coupled SmCo5/Co nanocomposites synthesized by a novel strategy. RSC Adv. 2015;5(108):89128.CrossRefGoogle Scholar
  32. [32]
    Wang Y, Li Y, Rong C, Liu J. Sm–Co hard nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 2007;18(46):465701.CrossRefGoogle Scholar
  33. [33]
    Yue M, Zuo JH, Liu WQ, Lv WC, Zhang DT, Zhang JX, Guo ZH, Li W. Magnetic anisotropy in bulk nanocrystalline SmCo5 permanent magnet prepared by hot deformation. J Appl Phys. 2011;109(7):07A711.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations