Rare Metals

pp 1–7 | Cite as

Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture

  • Zhi-Nian Li
  • Hao-Chen Qiu
  • Shu-Mao Wang
  • Li-Jun Jiang
  • Jun Du
  • Jun-Xian Zhang
  • Michel Latroche
  • Fermin Cuevas
Article
  • 43 Downloads

Abstract

The Li–Mg–N–H hydrogen storage system is a promising hydrogen storage material due to its moderate operation temperature, good reversibility, and relatively high capacity. In this work, the Li–Mg–N–H composite was directly synthesized by reactive ball milling (RBM) of Li3N and Mg powder mixture with a molar ratio of 2:1 under hydrogen pressure of 9 MPa. More than 8.8 wt% hydrogen was absorbed during the RBM process. The phases and structural evolution during the in situ hydrogenation process were analyzed by means of in situ solid–gas absorption and ex situ X-ray diffraction (XRD) measurements. It is determined that the hydrogenation can be divided into two steps, leading to mainly the formation of a lithium magnesium imide phase and a poorly crystallized amide phase, respectively. The H-cycling properties of the as-milled composite were determined by temperature-programmed dehydrogenation (TPD) method in a closed system. The onset dehydrogenation temperature was detected at 125 °C, and it can reversibly desorb 3.1 wt% hydrogen under a hydrogen back pressure of 0.2 MPa. The structural evolution during dehydrogenation was further investigated by in situ XRD measurement. It is found that Mg(NH2)2 phase disappears at about 200 °C, and Li2Mg2N3H3, LiNH2, and Li2MgN2H2 phases coexist at even 300 °C, revealing that the dehydrogenation process is step-wised and only partial hydrogen can be desorbed.

Keywords

Mechanochemistry Hydrogen storage properties Li–Mg–N–H 

Notes

Acknowledgments

This work was financially supported by the Beijing Science and Technology Program (No.D141100002014002) and the European COST Action (No.MP1103). The authors also thank R. Janot from Laboratoire de Réactivité et Chimie des Solides, Centre National de la Recherche Scientifique (LRCS/CNRS), France, for FTIR measurements.

References

  1. [1]
    Crabtree G, Dresselhaus M, Buchanan M. The hydrogen economy. Phys Today. 2004;57(12):39.CrossRefGoogle Scholar
  2. [2]
    Zhou L. Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev. 2005;9(4):395.CrossRefGoogle Scholar
  3. [3]
    Chen P, Xiong ZT, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420(6913):302.CrossRefGoogle Scholar
  4. [4]
    Luo WF. (LiNH2–MgH2): a viable hydrogen storage system. J Alloys Compd. 2004;381(1–2):284.CrossRefGoogle Scholar
  5. [5]
    Xiong ZT, Wu GT, Hu JJ, Chen P. Ternary imides for hydrogen storage. Adv Mater. 2004;16(17):522.CrossRefGoogle Scholar
  6. [6]
    Sudik A, Yang J, Halliday D, Wolverton C. Kinetic improvement in the Mg(NH2)2-LiH storage system by product seeding. J Phys Chem C. 2007;111(17):6568.CrossRefGoogle Scholar
  7. [7]
    Zhu XL, Zhao X, Li Y, Liu BZ. Improving hydrogen storage performance of Li–Mg–N–H system by adding niobium hydride. Rare Met. 2014;33(1):86.CrossRefGoogle Scholar
  8. [8]
    Wang JC, Li HL, Wang SM, Liu XP, Li Y, Jiang LJ. The desorption kinetics of the Mg(NH2)2 + LiH mixture. Int J Hydrog Energy. 2009;34(3):1411.CrossRefGoogle Scholar
  9. [9]
    Wang Y, Xu CC, Li J, Wang YJ, Jiang LF, Yuan H. Orthogonal test analysis of NaAlH4-TiF3 Co-catalyzed Mg(AlH4)2. Chin J Rare Met. 2014;38(1):55.Google Scholar
  10. [10]
    Xia L, Zhu S. Progress in high capacity hydrogen storage material of LiBH4. Chin J Rare Met. 2014;38(3):509.Google Scholar
  11. [11]
    Cao HJ, Wang H, He T, Wu GT, Xiong ZT, Qiu JS, Chen P. Improved kinetics of the Mg(NH2)2-2LiH system by addition of lithium halides. RSC Adv. 2014;4(61):32555.CrossRefGoogle Scholar
  12. [12]
    Gamba NS, Larochette PA, Gennari FC. Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2-2LiH composite. RSC Adv. 2015;5(84):68542.CrossRefGoogle Scholar
  13. [13]
    Rachel FB, Daniel R, David B, Paul AA. Effect of the calcium halides, CaCl2 and CaBr2, on hydrogen desorption in the Li-Mg-N-H system. J Alloys Compd. 2015;645(S1):S96.Google Scholar
  14. [14]
    Jalaal H, Andrew G. Thermodynamics, kinetics and modeling studies of KH- RbH- and CsH-doped 2LiNH2/MgH2 hydrogen storage systems. Int J Hydrog Energy. 2015;40(36):12336.CrossRefGoogle Scholar
  15. [15]
    Tolulope D, Jalaal H, Andrew G. Rubidium hydride: potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. Int J Hydrog Energy. 2015;40(5):2266.CrossRefGoogle Scholar
  16. [16]
    Zhao DL, Zhang YH. Research progress in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.CrossRefGoogle Scholar
  17. [17]
    Zhang XG, Li ZN, Wang SM, Mi J, Jiang LJ, Lv F, Liu XP. Hydrogen storage properties of the CeH2 doped Li-Mg-N-H/NaAlH4 system. J Rare Earths. 2011;29(6):599.CrossRefGoogle Scholar
  18. [18]
    Zhao W, Jiang LJ, Wu YF, Ye JH, Yuan BL, Li ZN, Liu XP, Wang SM. Improved dehydrogenation cycle performance of the 1.1MgH2-2LiNH2-0.1LiBH4 system by addition of LaNi4.5Mn0.5 alloy. J Rare Earths. 2015;33(7):783.CrossRefGoogle Scholar
  19. [19]
    Chen P, Xiong ZT, Yang L, Wu GT, Luo WF. Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. J Phys Chem B. 2006;110(29):14221.CrossRefGoogle Scholar
  20. [20]
    Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.CrossRefGoogle Scholar
  21. [21]
    Liang C, Liu Y, Luo K, Li B, Gao M, Pan H, Wang Q. Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH2/MgH2 system. Chem Eur J. 2008;16(2):693.CrossRefGoogle Scholar
  22. [22]
    Kojima Y, Kawai Y, Ohba N. Hydrogen storage of metal nitrides by a mechanochemical reaction. J Power Sources. 2006;159(1):81.CrossRefGoogle Scholar
  23. [23]
    Li ZN, Zhang JX, Wang SM, Jiang LJ, Latroche M, Du J, Cuevas F. Mechanochemistry of lithium nitride under hydrogen gas. Phys Chem Chem Phys. 2015;17(34):21927.CrossRefGoogle Scholar
  24. [24]
    Zhang B, Wu Y. Hydrogen absorption-desorption mechanisms for the ball-milled Li3N-MgH2 (1:1) mixture. Int J Hydrog Energy. 2014;39(25):13603.CrossRefGoogle Scholar
  25. [25]
    Zhang B, Wu Y. Effects of additives on the microstructure and hydrogen storage properties of the Li3N-MgH2 mixture. J Alloys Compd. 2014;613(15):199.Google Scholar
  26. [26]
    Doppiu S, Schultz L, Gutfleisch O. In-situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. J Alloy Compd. 2007;427(1–2):204.CrossRefGoogle Scholar
  27. [27]
    Zhang JX, Cuevas F, Zaïdi W, Bonnet JP, Aymard L, Bobet JL, Latroche M. Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM=Fe Co, Ni). J Phys Chem C. 2011;115(11):4971.CrossRefGoogle Scholar
  28. [28]
    Hemmes H, Driessen A, Griessen R. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000 K. J Phys C Solid State Phys. 1986;19(19):3571.CrossRefGoogle Scholar
  29. [29]
    Rodriguez-Carvajal J. FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse; 1990. 237.Google Scholar
  30. [30]
    Calder RS, Cochran W, Griffiths D, Lowde RD. An X-ray and neutron diffraction analysis of lithium hydride. J Phys Chem Solids. 1962;23(6):621.CrossRefGoogle Scholar
  31. [31]
    Sorby MH, Nakamura Y, Brinks HW, Ichikawa T, Hino S, Fujii H, Hauback BC. The crystal structure of LiND2 and Mg(ND2)2. J Alloys Compd. 2007;428(1–2):297.CrossRefGoogle Scholar
  32. [32]
    David WIF, Jones MO, Gregory DH, Jewell CM, Johnson SR, Walton A, Edwards PP. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J Am Chem Soc. 2007;129(6):1594.CrossRefGoogle Scholar
  33. [33]
    Linde G, Juza R. Ir spectra of amides and imides of divalent and Trivalent Metals. Z Anorg Allg Chem. 1974;409(2):199.CrossRefGoogle Scholar
  34. [34]
    Bohger JPO, Essmann RR, Jacobs H. Infrared and Raman studies on the internal modes of lithium amide. J Mol Struct. 1995;348(2):325.CrossRefGoogle Scholar
  35. [35]
    Hu J, Liu Y, Wu G, Xiong Z, Chen P. Structural and compositional changes during hydrogenation/dehydrogenation of the Li–Mg–N–H system. J Phys Chem C. 2007;111(49):18439.CrossRefGoogle Scholar
  36. [36]
    Beister HJ, Haag S, Kniep R, Strössner K, Syassen K. Phase transformations of lithium nitride under pressure. Angew Chem Int Ed Engl. 1988;27(8):1101.CrossRefGoogle Scholar
  37. [37]
    Ohoyama K, Nakamori Y, Orimo S, Yamada K. Revised crystal structure model of Li2NH by neutron powder diffraction. J Phys Soc Jpn. 2005;74(1):483.CrossRefGoogle Scholar
  38. [38]
    Rijssenbeek J, Gao Y, Hanson J, Huang Q, Jones C, Toby B. Crystal structure determination and reaction pathway of amide–hydride mixtures. J Alloys Compd. 2008;454(1–2):233.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Energy Materials and TechnologyGeneral Research Institute for Nonferrous MetalsBeijingChina
  2. 2.UMR7182, CMTR/ICMPE/CNRS-UPECThiais CedexFrance

Personalised recommendations