Advertisement

Rare Metals

, Volume 36, Issue 7, pp 581–590 | Cite as

Stir casting process for manufacture of Al–SiC composites

  • Shahin Soltani
  • Rasoul Azari Khosroshahi
  • Reza Taherzadeh MousavianEmail author
  • Zheng-Yi Jiang
  • Alireza Fadavi Boostani
  • Dermot Brabazon
Article

Abstract

Stir casting is an economical process for the fabrication of aluminum matrix composites. There are many parameters in this process, which affect the final microstructure and mechanical properties of the composites. In this study, micron-sized SiC particles were used as reinforcement to fabricate Al-3 wt% SiC composites at two casting temperatures (680 and 850 °C) and stirring periods (2 and 6 min). Factors of reaction at matrix/ceramic interface, porosity, ceramic incorporation, and agglomeration of the particles were evaluated by scanning electron microscope (SEM) and high-resolution transition electron microscope (HRTEM) studies. From microstructural characterizations, it is concluded that the shorter stirring period is required for ceramic incorporation to achieve metal/ceramic bonding at the interface. The higher stirring temperature (850 °C) also leads to improved ceramic incorporation. In some cases, shrinkage porosity and intensive formation of Al4C3 at the metal/ceramic interface are also observed. Finally, the mechanical properties of the composites were evaluated, and their relation with the corresponding microstructure and processing parameters of the composites was discussed.

Keywords

Aluminum matrix composite Microstructure Mechanical properties Stir casting 

References

  1. [1]
    Roshan M, Mousavian RT, Ebrahimkhani H, Mosleh A. Fabrication of Al-based composites reinforced with Al2O3–TiB2 ceramic composite particulates using vortex-casting method. J Min Metall Sect B. 2013;49(3):299.CrossRefGoogle Scholar
  2. [2]
    Valibeygloo N, Khosroshahi RA, Mousavian RT. Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Miner Metall Mater. 2013;20(10):978.CrossRefGoogle Scholar
  3. [3]
    Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram Int. 2014;40(6):8323.CrossRefGoogle Scholar
  4. [4]
    Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating. Metall Mater Trans B. 2015;46(1):12.CrossRefGoogle Scholar
  5. [5]
    Naher S, Brabazon D, Looney L. Development and assessment of a new quick quench stir caster design for the production of metal matrix composites. J Mater Process Technol. 2005;166(3):430.CrossRefGoogle Scholar
  6. [6]
    Naher S, Brabazon D, Looney L. Computational and experimental analysis of particulate distribution during Al–SiC MMC fabrication. Compos Part A Appl Sci Manuf. 2007;38(3):719.CrossRefGoogle Scholar
  7. [7]
    Mousavian RT, Damadi SR, Khosroshahi RA, Brabazon D, Mohammadpour M. A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites. Int J Adv Manuf Technol. 2015;. doi: 10.1007/s00170-015-7246-4.Google Scholar
  8. [8]
    Boostani AF, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Khosroshahi RA, Mousavian RT, Xu J, Zhang X, Gong D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos A. 2015;68(2):155.CrossRefGoogle Scholar
  9. [9]
    Hashim J, Looney L, Hashmi M. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;92–93:1.CrossRefGoogle Scholar
  10. [10]
    Naher S, Brabazon D, Looney L. Simulation of the stir casting process. J Mater Process Technol. 2003;143:567.CrossRefGoogle Scholar
  11. [11]
    Hashim J, Looney L, Hashmi M. The enhancement of wettability of SiC particles in cast aluminum matrix composites. J Mater Process Technol. 2001;119(1):329.CrossRefGoogle Scholar
  12. [12]
    Hashim J, Looney L, Hashmi M. The wettability of SiC particles by molten aluminum alloy. J Mater Process Technol. 2001;119(1):324.CrossRefGoogle Scholar
  13. [13]
    Rajan T, Pillai R, Pai B, Satyanarayana K, Rohatgi P. Fabrication and characterisation of Al–7Si–0.35 Mg/fly ash metal matrix composites processed by different stir casting routes. Compos Sci Technol. 2007;67(15):3369.CrossRefGoogle Scholar
  14. [14]
    Surappa M. Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater Sci Eng A. 2008;480(1):117.Google Scholar
  15. [15]
    Ibrahim I, Mohamed F, Lavernia E. Particulate reinforced metal matrix composites–a review. J Mater Sci. 1991;26(5):1137.CrossRefGoogle Scholar
  16. [16]
    Srivatsan T, Ibrahim I, Mohamed F, Lavernia E. Processing techniques for particulate-reinforced metal aluminum matrix composites. J Mater Sci. 1991;26(22):5965.CrossRefGoogle Scholar
  17. [17]
    Rajan T, Pillai R, Pai B. Reinforcement coatings and interfaces in aluminum metal matrix composites. J Mater Sci. 1998;33(14):3491.CrossRefGoogle Scholar
  18. [18]
    Schultz B, Ferguson J, Rohatgi P. Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater Sci Eng A. 2011;530:87.CrossRefGoogle Scholar
  19. [19]
    Sukumaran K, Pillai S, Pillai R, Kelukutty V, Pai B, Satyanarayana K, Ravikumar KK. The effects of magnesium additions on the structure and properties of Al-7Si-10SiCp composites. J Mater Sci. 1995;30(6):1469.Google Scholar
  20. [20]
    Candan E, Atkinson HV, Turen Y, Salaoru I, Candan S. Wettability of aluminum–magnesium alloys on silicon carbide substrates. J Am Ceram Soc. 2011;94(3):867.CrossRefGoogle Scholar
  21. [21]
    Prabu SB, Karunamoorthy L, Kathiresan S, Mohan B. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J Mater Process Technol. 2006;171(2):268.CrossRefGoogle Scholar
  22. [22]
    Urena A, Martınez E, Rodrigo P, Gil L. Oxidation treatments for SiC particles used as reinforcement in aluminum matrix composites. Compos Sci Technol. 2004;64(12):1843.CrossRefGoogle Scholar
  23. [23]
    Tham L, Gupta M, Cheng L. Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminum–silicon carbide composites. Acta Mater. 2001;49(16):3243.CrossRefGoogle Scholar
  24. [24]
    Yan M, Fan Z. Review durability of materials in molten aluminum alloys. J Mater Sci. 2001;36(2):285.CrossRefGoogle Scholar
  25. [25]
    Ureña A, Escalera M, Gil L. Oxidation barriers on SiC particles for use in aluminum matrix composites manufactured by casting route: mechanisms of interfacial protection. J Mater Sci. 2002;37(21):4633.CrossRefGoogle Scholar
  26. [26]
    Monroe R. Porosity in castings. AFS Trans. 2005;113:519.Google Scholar
  27. [27]
    Lapham D, Schwandt C, Hills M, Kumar R, Fray D. The detection of hydrogen in molten aluminum. Ionics. 2002;8(5–6):391.CrossRefGoogle Scholar
  28. [28]
    Yi J, Gao Y, Lee P, Flower H, Lindley T. Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys. Metall Mater Trans A. 2003;34(9):1879.CrossRefGoogle Scholar
  29. [29]
    Wang Q, Crepeau P, Davidson C, Griffiths J. Oxide films, pores and the fatigue lives of cast aluminum alloys. Metall Mater Trans B. 2006;37(6):887.CrossRefGoogle Scholar
  30. [30]
    Hansen N. Hall-Petch relation and boundary strengthening. Scr Mater. 2004;51(8):801.CrossRefGoogle Scholar
  31. [31]
    Viala J, Bosselet F, Laurent V, Lepetitcorps Y. Mechanism and kinetics of the chemical interaction between liquid aluminum and silicon-carbide single crystals. J Mater Sci. 1993;28(19):5301.CrossRefGoogle Scholar
  32. [32]
    Pech-Canul MI. Aluminum alloys for Al/SiC Composites. In: Ahmad Z, editor. Recent Trends in Processing and Degradation of Aluminum Alloys. Shanghai: InTech; 2011. 299.Google Scholar
  33. [33]
    Lee JC, Byun JY, Park SB, Lee HI. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Mater. 1998;46(5):1771.CrossRefGoogle Scholar
  34. [34]
    Bao S, Tang K, Kvithyld A, Engh T, Tangstad M. Wetting of pure aluminum on graphite, SiC and Al2O3 in aluminum filtration. Trans Nonferrous Metals Soc China. 2012;22(8):1930.CrossRefGoogle Scholar
  35. [35]
    Yang H, Gu M, Jiang W, Zhang G. Interface microstructure and reaction in Gr/Al metal matrix composites. J Mater Sci. 1996;31(7):1903.CrossRefGoogle Scholar
  36. [36]
    Kobashi M, Choh T. The wettability and the reaction for SiC particle/Al alloy system. J Mater Sci. 1993;28(3):684.CrossRefGoogle Scholar
  37. [37]
    Huber T, Degischer H-P, Lefranc G, Schmitt T. Thermal expansion studies on aluminum-matrix composites with different reinforcement architecture of SiC particles. Compos Sci Technol. 2006;66(13):2206.CrossRefGoogle Scholar
  38. [38]
    Chawla N, Deng X, Schnell D. Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites. Mater Sci Eng A. 2006;426(1):314.CrossRefGoogle Scholar
  39. [39]
    Mummery P, Derby B. The influence of microstructure on the fracture behaviour of particulate metal matrix composites. Mater Sci Eng A. 1991;135:221.CrossRefGoogle Scholar
  40. [40]
    Cöcen Ü, Önel K. Ductility and strength of extruded SiCp/aluminum-alloy composites. Compos Sci Technol. 2002;62(2):275.CrossRefGoogle Scholar
  41. [41]
    Arpon R, Molina J, Saravanan R, Garcia-Cordovilla C, Louis E, Narciso J. Thermal expansion behaviour of aluminum/SiC composites with bimodal particle distributions. Acta Mater. 2003;51(11):3145.CrossRefGoogle Scholar
  42. [42]
    Lewandowski J, Liu C, Hunt W Jr. Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater Sci Eng A. 1989;107:241.CrossRefGoogle Scholar
  43. [43]
    Wang Z, Song M, Sun C, He Y. Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater Sci Eng A. 2011;528(3):1131.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran
  2. 2.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia
  3. 3.Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing EngineeringDublin City UniversityDublin 9Ireland

Personalised recommendations