Advertisement

Rare Metals

, Volume 38, Issue 3, pp 206–209 | Cite as

Low-temperature synthesis of SiC nanowires with Ni catalyst

  • Wei-Li Xie
  • Xiao-Dong ZhangEmail author
  • Wen-Hui Liu
  • Qi Xie
  • Guang-Wu Wen
  • Xiao-Xiao Huang
  • Jian-Dong Zhu
  • Fei-Xiang Ma
Article
  • 147 Downloads

Abstract

SiC nanowires were fabricated on the silicon substrate dipped with a layer of Ni catalyst at 900 °C by gas pressure annealing processing. The morphologies and crystal structures were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that the as-synthesized nanowires are β-SiC single crystalline with diameter range of 50–100 nm, and length of tens of micron by directly annealing at 900 °C. The SiC nanowires grow along the [111] direction with highly uniform morphology. And the possible growth mechanism of SiC nanowires is proposed. The present work provides an efficient strategy for the production of high-quality SiC nanowires.

Keywords

SiC nanowires Single crystalline silicon Ni catalyst Growth mechanism 

Notes

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program (No. 2007AA03Z340), the National Natural Science Foundation of China (Nos. 51202045, 51021002, 51172050, 51102063, 51372052 and 50672018), the Fundamental Research Funds for the Central Universities (No. HIT. NSRIF. 2013004) and the Key Technology Research and Development Program of Heilongjiang Province (No. GC12C305-3).

References

  1. [1]
    Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;6348(354):56.CrossRefGoogle Scholar
  2. [2]
    Dai H, Wong EW, Lu YZ, Fan S, Lieber CM. Synthesis and characterization of carbide nanorods. Nature. 1995;6534(375):769.CrossRefGoogle Scholar
  3. [3]
    Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997;277(5334):1971.CrossRefGoogle Scholar
  4. [4]
    Zhou XT, Lai HL, Peng HY, Au FCK, Liao LS, Wang N, Bello I, Lee CS, Lee ST. Thin beta-SiC nanorods and their field emission properties. Chem Phys Lett. 2000;318(1–3):58.CrossRefGoogle Scholar
  5. [5]
    Choi HJ, Seong HK, Lee JC, Sung YM. Growth and modulation of silicon carbide nanowires. J Cryst Growth. 2004;269(2–4):472.CrossRefGoogle Scholar
  6. [6]
    Wang ZL, Dai ZR, Gao RP, Bai ZG, Gole JL. Side-by-side silicon carbide–silica biaxial nanowires: synthesis, structure, and mechanical properties. Appl Phys Lett. 2000;77(21):3349.CrossRefGoogle Scholar
  7. [7]
    Hao YJ, Jin GQ, Han XD, Guo XY. Synthesis and characterization of bamboo-like SiC nanofibers. Mater Lett. 2006;60(11):1334.CrossRefGoogle Scholar
  8. [8]
    Shi WS, Zheng YF, Peng HY, Wang N, Lee CS, Lee ST. Laser ablation synthesis and optical characterization of silicon carbide nanowires. J Am Ceram Soc. 2000;83(12):3228.CrossRefGoogle Scholar
  9. [9]
    Li YB, Xie SS, Zou XP, Tang DS, Liu ZQ, Zhou WY, Wang G. Large-scale synthesis of β-SiC nanorods in the arc-discharge. J Cryst Growth. 2001;223(1–2):125.Google Scholar
  10. [10]
    Zhang XD, Huang XX, Wen GW, Geng X, Zhu JD, Zhang T, Bai HW. Novel SiOC nanocomposites for high-yield preparation of ultra-large-scale SiC nanowires. Nanotechnology. 2010;21(38):385601.CrossRefGoogle Scholar
  11. [11]
    Wen GW, Li F, Han ZX, Bai HW. Growth of beta-SiC nanowires from sibonc nano powder compacts. Rare Metal Mater Eng. 2008;37(3):561.Google Scholar
  12. [12]
    Ju ZC, Ma XC, Fan N, Li P, Xu LQ, Qian YT. High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route. Mater Lett. 2007;61(18):3913.CrossRefGoogle Scholar
  13. [13]
    Hao YJ, Wagner JB, Su DS, Jin GQ, Guo XY. Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel. Nanotechnology. 2006;17(12):2870.CrossRefGoogle Scholar
  14. [14]
    Wen GW, Li F, Han ZX, Bai HW. Growth of beta-SiC nanowires from sibonc nano powder compacts. Rare Metal Mater Eng. 2008;37(3):561.Google Scholar
  15. [15]
    Wagner RS, Ellis WC. Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett. 1964;21(4):89.CrossRefGoogle Scholar
  16. [16]
    Xing YJ, Xi ZH, Yu DP, Hang QL, Yan HF, Feng SQ, Xue ZQ. Heating process of solid–liquid–solid (SLS) growth of silicon nanowires. J Electron Inf Technol. 2003;25(2):259.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wei-Li Xie
    • 1
    • 3
  • Xiao-Dong Zhang
    • 1
    Email author
  • Wen-Hui Liu
    • 1
  • Qi Xie
    • 1
  • Guang-Wu Wen
    • 1
    • 2
  • Xiao-Xiao Huang
    • 1
  • Jian-Dong Zhu
    • 2
  • Fei-Xiang Ma
    • 1
  1. 1.School of Material Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School of Material Science and EngineeringHarbin Institute of Technology at WeihaiWeihaiChina
  3. 3.Department of Prosthodontics, School of StomatologyHarbin Medical UniversityHarbinChina

Personalised recommendations