Advertisement

Rare Metals

, Volume 38, Issue 1, pp 29–34 | Cite as

Hydrothermal synthesis mechanism and electrochemical performance of LiMn0.6Fe0.4PO4 cathode material

  • Chang-Chang Xu
  • Ying Wang
  • Li Li
  • Yi-Jing WangEmail author
  • Li-Fang Jiao
  • Hua-Tang Yuan
Article
  • 80 Downloads

Abstract

Monocrystal LiMn0.6Fe0.4PO4 cathode material was obtained via hydrothermal method at 180 °C for 10 h without any surfactant. The effects of hydrothermal time on the phase and morphology of the material were discussed. By controlling the reaction solutions, the rodlike, flowerlike, and strawlike LiMn0.6Fe0.4PO4 cathode materials were synthesized. Electrochemical performances show that the rodlike LiMn0.6Fe0.4PO4 has the best electrochemical properties. The initial discharge capacity of the rodlike structure is 106.4 mAh·g−1, which is higher than those of flowerlike and strawlike materials.

Keywords

LiMn0.6Fe0.4PO4 Hydrothermal method Cathode material Lithium-ion batteries Synthesis mechanism 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21231005 and 51071087), the Major State Basic Research Development Program of China (Nos. 2011CB935900 and 2010CB631303), the Discipline Innovative Engineering Plan (B12015), the Research Fund for the Doctoral Program of Higher Education of China (No. 20120031110001), and the Tianjin Science & Technology Project (No. 10SYSYJC27600).

References

  1. [1]
    Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem Mater. 2010;22(3):691.CrossRefGoogle Scholar
  2. [2]
    Bi J, Shao S, Guan W, Wang L. State of charge estimation of Li-ion batteries in electric vehicle based on radial-basis-function neural network. Chin Phys B. 2012;21(11):118801.CrossRefGoogle Scholar
  3. [3]
    Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials. J Mater Chem. 2011;21(27):9938.CrossRefGoogle Scholar
  4. [4]
    Pitchai R, Thavasi V, Mhaisalkar SG, Ramakrishna S. Nanostructured cathode materials: a key for better performance in Li-ion batteries. J Mater Chem. 2011;21(30):11040.CrossRefGoogle Scholar
  5. [5]
    Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater. 2009;21(45):4593.CrossRefGoogle Scholar
  6. [6]
    Song HK, Lee KT, Kim MG, Nazar LF, Cho J. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater. 2010;20(22):3818.CrossRefGoogle Scholar
  7. [7]
    Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320.Google Scholar
  8. [8]
    Xin XG, Shen JQ, Shi SQ. Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ spinels: a first-principles study. Chin Phys B. 2012;21(12):128202.CrossRefGoogle Scholar
  9. [9]
    Yang LJ, Wang JL, Yang CT, Mei LR. Preparation of silicon nanowires by hydrothermal and its physical properties. Chin J Rare Met. 2013;37(4):564.Google Scholar
  10. [10]
    Ban LQ, Zhuang WD, Lu HQ, Yin YP, Wang Z. Progress in modification of layered cathode material Li-Ni-Co-Mn-O. Chin J Rare Met. 2013;37(5):820.Google Scholar
  11. [11]
    Kim J, Seo DH, Kim SW, Park YU, Kang K. Mn based olivine electrode material with high power and energy. Chem Commun. 2010;46(8):1305.CrossRefGoogle Scholar
  12. [12]
    Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D. LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed. 2009;48(45):8559.CrossRefGoogle Scholar
  13. [13]
    Wang H, Yang Y, Liang Y, Cui LF, Casalongue HS, Li Y, Hong G, Cui Y, Dai H. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed. 2011;50(32):7364.CrossRefGoogle Scholar
  14. [14]
    Guo YQ, Huang R, Song J, Wang X, Song C, Zhang YX. Growth characteristics of amorphous-layer-free nanocrystalline silicon films fabricated by very high frequency PECVD at 250 C. Chin Phys B. 2012;21(6):066106.CrossRefGoogle Scholar
  15. [15]
    Wang YR, Yang YF, Yang YB, Shao HX. Fabrication of microspherical LiMnPO4 cathode material by a facile one-step solvothermal process. Mater Res Bull. 2009;44(11):2139.CrossRefGoogle Scholar
  16. [16]
    Pan XL, Xu CY, Zhen L. Synthesis of LiMnPO4 microspheres assembled by plates, wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm. 2012;14(20):6412.CrossRefGoogle Scholar
  17. [17]
    Nie P, Shen LF, Zhang F, Chen L, Deng HF, Zhang XG. Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm. 2012;14(13):4284.CrossRefGoogle Scholar
  18. [18]
    Zhang Y, Sun CS, Zhou Z. Sol-gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core-shell nanostructure. Electrochem Commun. 2009;11(6):1183.CrossRefGoogle Scholar
  19. [19]
    Wang F, Yang J, Gao PF, NuLi YN, Wang JL. Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. J Power Sources. 2011;196(23):10258.CrossRefGoogle Scholar
  20. [20]
    Yang Z, Yu HM, Wu CY, Cao GS, Xie J, Zhao XB. Preparation of nano-structured LiFexMn1–xPO4 (x = 0, 0.2, 0.4) by reflux method and research on the influences of Fe(II) substitution. J Mater Sci Technol. 2012;28(9):823.CrossRefGoogle Scholar
  21. [21]
    Du HM, Jiao LF, Wang QH, Huan QH, Guo LJ, Si YC, Wang YJ, Yuan HT. Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application. CrystEngComm. 2013;15(30):6101.CrossRefGoogle Scholar
  22. [22]
    Chang XY, Wang ZX, Li XH, Zhang L, Guo HJ, Peng WJ. Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater Res Bull. 2005;40(9):1513.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chang-Chang Xu
    • 1
    • 2
    • 3
    • 4
  • Ying Wang
    • 1
    • 2
    • 3
    • 4
  • Li Li
    • 1
    • 2
    • 3
    • 4
  • Yi-Jing Wang
    • 1
    • 2
    • 3
    • 4
    Email author
  • Li-Fang Jiao
    • 1
    • 2
    • 3
    • 4
  • Hua-Tang Yuan
    • 1
    • 2
    • 3
    • 4
  1. 1.Institute of New Energy Material ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinChina
  3. 3.Key Laboratory of Advanced Energy Materials ChemistryNankai UniversityTianjinChina
  4. 4.Tianjin Key Laboratory on Metal and Molecule-based Material ChemistryNankai UniversityTianjinChina

Personalised recommendations