Rare Metals

, Volume 31, Issue 1, pp 35–38 | Cite as

Synthesis and luminescent properties of Ln3+ (Ln3+ = Eu3+, Dy3+) -doped Bi2ZnB2O7 phosphors

  • Qiuhong Zhang
  • Jing WangEmail author
  • Haiyong Ni
  • Lingli Wang


The new phosphors Bi2ZnB2O7: Ln3+ (Ln3+ = Eu3+, Dy3+) were synthesized by solid-state reaction technique. The obtained phosphors were investigated by means of X-ray powder diffraction (XRD), photoluminescence excitation and emission spectra with the aim of enhancing the fundamental knowledge about the luminescent properties of Eu3+ and Dy3+ ions in the Bi2ZnB2O7 host lattice. XRD analysis shows that all these compounds are of a single phase of Bi2ZnB2O7. The excitation and emission spectra of Bi2ZnB2O7: Ln3+ (Ln3+ = Eu3+, Dy3+) at room temperature show the typical 4f-4f transitions of Eu3+ and Dy3+, respectively. The hypersensitive transitions of 5D07F2 (Eu3+) and 4F9/26H13/2 (Dy3+) are relatively higher than those of the insensitive transitions in Bi2ZnB2O7. It is conceivable that the Bi2ZnB2O7 structure provides asymmetry sites for activators (Eu3+, Dy3+). The optimum concentrations of Eu3+ and Dy3+ ions in Bi2ZnB2O7 phosphors are both x = 0.05.


phosphor Bi2ZnB2O7 luminescent properties concentration quenching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blasse G., and Grabmaier B.C., Luminescent Materials, Edited by Springer-Verlag, Berlin, Heidelberg, 1994.Google Scholar
  2. [2]
    Liu X.M. and Lin J., LaGaO3:A (A = Sm3+ and/or Tb3+) as promising phosphors for field emission displays, J. Mater. Chem., 2008, 18(2): 221.CrossRefGoogle Scholar
  3. [3]
    Han B., Liang H.B., Lin H.H., Zhong J.P., Su Q., Zhang G.B., and Fu Y.B., Green emission of Ca3La3(1−x)Tb3x(BO3)5 under VUV-UV excitation, Appl. Phys. A., 2007, 88(4): 705.CrossRefGoogle Scholar
  4. [4]
    Zhang M., Wang J., Zhang Q.H., Ding W.J., and Su Q., Optical properties of Ba2SiO4:Eu2+ phosphor for green light-emitting diode (LED), Mater. Res. Bull., 2007, 42(1): 33.CrossRefGoogle Scholar
  5. [5]
    Zhang M., Wang J., Ding W.J., Zhang Q.H., and Su Q., Luminescence properties of M2MgSi2O7:Eu2+ (M = Ca, Sr) phosphors and their effects on yellow and blue LEDs for solid-state lighting, Opt. Mater., 2007, 30(4): 571.CrossRefGoogle Scholar
  6. [6]
    Kodama N., Tanii Y., and Yamaga M., Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7, J. Lumin., 2000, 87–89: 1076.CrossRefGoogle Scholar
  7. [7]
    Malinowski M., Pracka I., Myziak P., Piramidowicz R., and Woliń ski W., Spectroscopy of Dy3+-doped SrLaGa3O7 crystals, J. Lumin., 1997, 72–74: 224.CrossRefGoogle Scholar
  8. [8]
    Liebertz J., Wostrack A., Wirth V., Hellwig H., Held P., and Bohatý L., Das azentrische Wismutzinkborat Bi2Zn2B2O7: Kristallstruktur und Züchtung sowie lineare und nichtlineare optische Eigenschaften, Z Kristallogr Suppl., 1997, 12(1): 85.Google Scholar
  9. [9]
    Jacques B., Nicolas P., and Lachlan M.C., Melilite-type borates Bi2Zn2B2O7 and CaBiGaB2O7, Chem. Mater., 2005, 17(12): 3130.CrossRefGoogle Scholar
  10. [10]
    Zhang Q.H., Wang J., Zhang M., Ding W.J., and Su Q., Luminescence properties of Sm3+ doped Bi2ZnB2O7, J. Rare Earth., 2006, 24(4): 392.CrossRefGoogle Scholar
  11. [11]
    Su Q., Chemistry of Rare Earths, Henan Science and Technology Publishing Company, Zhengzhou, 1996.Google Scholar
  12. [12]
    Blasse G., On the Eu3+ fluorescence of mixed metal oxides. IV. The Photoluminescent Efficiency of Eu3+-Activated Oxides, J. Chem. Phys., 1966, 45(7): 2356.CrossRefGoogle Scholar
  13. [13]
    Schmechel R., Kennedy M., von Seggern H., Winkler H., Kolbe M., Fischer R.A., Li X.M., Benker A., Winterer M., and Hahn H., Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials, J. Appl. Phys., 2001, 89(3): 1679.CrossRefGoogle Scholar
  14. [14]
    Sun Y., Qi L., Lee M., Lee B.I., Samuels W.D., and Exarhos G.J., Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution, J. Lumin., 2004, 109(2): 85.CrossRefGoogle Scholar
  15. [15]
    Zhou Y., Lin J., Yu M., and Wang S., Comparative study on the luminescent properties of Y3Al5O12:RE3+ (RE: Eu, Dy) phosphors synthesized by three methods, J. Alloys. Compd., 2004, 375(1–2): 93.CrossRefGoogle Scholar
  16. [16]
    Neeraj S., Kijima N., and Cheetham A.K., Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x: Eu3+ (M=Gd, Y, Bi), Chem. Phys. Lett., 2004, 387(1–3): 2.CrossRefGoogle Scholar
  17. [17]
    Sivakumar V. and Varadaraju U.V., Intense red-emitting phosphors for white light emitting diodes, J. Electrochem. Soc., 2005, 152(10): H168.CrossRefGoogle Scholar
  18. [18]
    Li Y.Ch., Chang Y.H., and Lin Y.F., Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors, J. Alloys Compd., 2007, 439(1–2): 367.CrossRefGoogle Scholar
  19. [19]
    Jørgensen C.K. and Judd B.R., Hypersensitive pseudoquadrupole transitions in lanthanides, Mol. Phys., 1964, 8(3): 281.CrossRefGoogle Scholar
  20. [20]
    Blasse G. and Dirksen G.J., A simple luminescence experiment suggesting rare earth ion pairing in the fluorite structure, J. Electrochem. Soc., 1980, 127(4): 978.CrossRefGoogle Scholar
  21. [21]
    Nagli L., Bunimovich D., Katzir A., Gorodetsky O., and Molev V., The luminescence properties of Dy-doped high silicate glass, J. Non-Cryst Solids., 1997, 217(2): 208.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qiuhong Zhang
    • 1
    • 2
  • Jing Wang
    • 2
    Email author
  • Haiyong Ni
    • 1
  • Lingli Wang
    • 1
  1. 1.Rare Earth Metallurgy Research DepartmentGuangzhou Research Institute of Non-Ferrous MetalsGuangzhouChina
  2. 2.Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations