Rare Metals

, Volume 30, Supplement 1, pp 161–165

Synthesis and characterization of C, N-codoped TiO2 nanotubes/nanorods with visible-light activity

  • Junpeng Wang
  • Baibiao Huang
  • Zeyan Wang
  • Xiaoyan Qin
  • Xiaoyang Zhang


Visible-light response C, N-codoped TiO2 nanotubes with high aspect ratios were prepared by a two-step method. First the TiO2 nanotubes were synthesized by an ion-exchange method, and then the nanotubes were calcined at different temperatures with melamine as nitrogen and carbon source. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherms were employed to characterize the as-prepared samples. The results show that the nanotubular structure is destroyed when the calcination temperature is higher than 823 K. Further increase the temperature to 923 K, TiO2 is reduced to TiO. The photocatalytic activity of the codoped TiO2 nanotubes/nanorods was evaluated by degradation of Rhodamine B under visible-light irradiation (> 420 nm). Compared with N doped P25, these codoped TiO2 nanotubes/nanorods possess a superior photocatalytic acticity, owing to the synergistic effects of the nitrogen and carbon co-doping.


titania nitrogen carbon Co-doped photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Li H.X., Bian Z.F., Zhu J., Zhang D.Q., Li G.S., Huo Y.N., Li H., and Lu Y.F., Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J. Am. Chem. Soc., 2007, 129: 8406.CrossRefGoogle Scholar
  2. [2]
    Zheng Z.K., Huang B.B., Qin X.Y., Zhang X.Y., Dai Y., Jiang M.H., Wang P., and Whangbo M.H., Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets, Chem. Eur. J. 2009, 15: 12576.CrossRefGoogle Scholar
  3. [3]
    Wang X.N., Huang B.B., Wang Z.Y., Qin X.Y., Zhang X.Y., Dai Y., and Whangbo M.H., Synthesis of anatase TiO2 tubular structures microcrystallites with a high percentage of {001} facets by a simple one-step hydrothermal template process, Chem. Eur. J., 2010 16: 7106.Google Scholar
  4. [4]
    Lan Y., Gao X.P., Zhu H.Y., Zheng Z.F., Yan T.Y., Wu F., Ringer S.P., and Song D.Y., Titanate nanotubes and nanorods prepared from rutile powder, Adv. Funct. Mater., 2005, 15: 1310.CrossRefGoogle Scholar
  5. [5]
    Kobayashi S., Hanabusa K., Hamasaki N., Kimura M., and Shirai H., Preparation of TiO2 hollow-fibers using supramolecular assemblies, Chem. Mater. 2000, 12: 1523.CrossRefGoogle Scholar
  6. [6]
    Nelson K., and Deng Y.L., Enhanced light scattering from hollow polycrystalline TiO2 particles in a cellulose matrix, Langmuir, 2008, 24: 975.CrossRefGoogle Scholar
  7. [7]
    Dvoranová D, Brezová V, Mazúr M, and Malati M.A., Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B, 2002, 37: 91.CrossRefGoogle Scholar
  8. [8]
    Litter M.I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Appl. Catal. B: Environ, 1999, 23: 89.CrossRefGoogle Scholar
  9. [9]
    Herrmann J.-M., Tahiri H., Guillar C., and Pichat P., Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water, Catal. Today, 1999, 54: 131.CrossRefGoogle Scholar
  10. [10]
    Asahi R., Ohkawa T., Aoki K., and Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293: 269.CrossRefGoogle Scholar
  11. [11]
    Yamaki T., Sumita T., and Yamamoto S., Formation of TiO2-xFx compounds in fluorine-implanted TiO2, J. Mater. Sci. Lett., 2002, 21: 33.CrossRefGoogle Scholar
  12. [12]
    Zhao W., Ma W.H., Chen C.C., Zhao J.C., and Shuai Z.G., Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under Visible Irradiation, J. Am. Chem. Soc., 2004, 126: 4782.CrossRefGoogle Scholar
  13. [13]
    Irie H., Watanabe Y., and Hashimoto K., Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst, Chem. Lett., 2003, 32: 772.CrossRefGoogle Scholar
  14. [14]
    Xie Y., Li Y.Z., and Zhao X.J., Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped TiO2, J Mol. Catal. A Chem., 2007, 277: 119.CrossRefGoogle Scholar
  15. [15]
    Chen D.M., Jiang Z.Y., Geng J.Q., Wang Q., and Yang D., Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res., 2007, 46: 2741.CrossRefGoogle Scholar
  16. [16]
    Ohno T., Tsubota T., Toyofuku M., and Inaba R., Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light, Catal. Lett., 2004, 98: 255.CrossRefGoogle Scholar
  17. [17]
    Sakthivel S., and Kisch H., Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem., Int. Ed., 2003, 42: 4908.CrossRefGoogle Scholar
  18. [18]
    Diwald O., Thompson T.L., Zubkov T., Goralski E.G., Walck S.D., and Yates J.T., Jr. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light, J. Phys. Chem. B, 2004, 108: 6004.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Junpeng Wang
    • 1
  • Baibiao Huang
    • 1
  • Zeyan Wang
    • 1
  • Xiaoyan Qin
    • 1
  • Xiaoyang Zhang
    • 1
  1. 1.State Key Lab of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations