Rare Metals

, Volume 29, Issue 4, pp 407–412 | Cite as

Preparation of microsized silver crystals with different morphologies by a wet-chemical method



A wet-chemical method was presented for preparation of spherical, flowerlike, hexagonal, and triangular microsized silver crystals. Well-defined particles were prepared by mixing of iron(II) sulfate heptahydrate solution with silver nitrate solution at the presence of different modifiers with high-speed stirring at 8–20°C. It is found that the diameters of resulting products are 0.6–6.0 μm and the morphologies of the silver microcrystals are greatly affected by the introduced modifiers. It is concluded that the microsized silver crystals with different morphologies can be synthesized by introducing appropriate modifiers at appropriate experimental parameters. Scanning electron microscopy and X-ray diffraction were used to characterize the resulting products.


silver microcrystal wet-chemical method microsized iron(II) sulfate heptahydrate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mann S., The chemistry of form, Angew. Chem. Int. Ed., 2000, 39(19): 3392.Google Scholar
  2. [2]
    Cölfen H. and Mann S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed., 2003, 42(21): 2350.CrossRefGoogle Scholar
  3. [3]
    Peng X., Manna L., Yang W., Wickham J., Scher E., Kadavanich A., and Alivisatos A.P., Shape control of CdSe nanocrystals, Nature, 2000, 404(6773): 59.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Sun Y. and Xia Y., Shape-controlled synthesis of gold and silver nanoparticles, Science, 2002, 298(5601) 2176.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Jin R., Cao Y., Mirkin C.A., Kelly K.L., Schatz G.C., and Zheng J.G., Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294(5548): 1901.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Jin R., Cao Y., Hao E., Métraux G.S., Schatz G.C., and Mirkin C.A., Controlling anisotropic nanoparticle growth through plasmon excitation, Nature, 2003, 425(6957): 487.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Yu D. and Yam V.W., Controlled synthesis of monodisperse silver nanocubes in water, J. Am. Chem. Soc., 2004, 126(41): 13200.CrossRefPubMedGoogle Scholar
  8. [8]
    Hao E., Kelly K.L., Hupp J.T., and Schatz G.C., Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc., 2002, 124(51): 15182.CrossRefPubMedGoogle Scholar
  9. [9]
    Chen S., Fan Z., and Carroll D.L., Silver nanodisks: synthesis, characterization, and self-assembly, J. Phys. Chem. B, 2002, 106(42): 10777.CrossRefGoogle Scholar
  10. [10]
    Maillard M., Giorgio S., and Pileni M., Siver nanodisks, Adv. Mater., 2002, 14(15): 1084.CrossRefGoogle Scholar
  11. [11]
    Maillard M., Huang P., and Brus L., Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+], Nano Lett., 2003, 3(11): 1611.CrossRefADSGoogle Scholar
  12. [12]
    Santos I.P. and Liz-Marzán L.M., Synthesis of silver nanoprisms in DMF, Nano Lett., 2002, 2(8): 903.CrossRefADSGoogle Scholar
  13. [13]
    Chen S. and Carroll D.L., Synthesis and characterization of truncated triangular silver nanoplates, Nano Lett., 2002, 2(9): 1003.CrossRefADSGoogle Scholar
  14. [14]
    Callegari A., Tonti D., and Chergui M., Photochemically grown silver nanoparticles with wavelength-controlled size and shape, Nano Lett., 2003, 3(11): 1565.CrossRefADSGoogle Scholar
  15. [15]
    Jiang L.P., Xu S., Zhu J.M., Zhang J.R., Zhu J.J., and Chen H.Y., Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings, Inorg. Chem., 2004, 43(19): 5877.CrossRefPubMedGoogle Scholar
  16. [16]
    Sun Y. and Xia Y., Triangular nanoplates of silver synthesis characterization, and use as sacrificial templates for generating triangular nanorings of gold, Adv. Mater., 2003, 15(9): 695.CrossRefGoogle Scholar
  17. [17]
    Sun Y., Mayers B., and Xia Y., Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett., 2003, 3(5): 675.CrossRefADSGoogle Scholar
  18. [18]
    Jana N.R., Gearheart L., and Murphy C.J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun., 2001, 7: 617.CrossRefGoogle Scholar
  19. [19]
    Caswell K.K., Bender C.M., and Murphy C.J., Seedless, surfactantless wet chemical synthesis of silver nanowires, Nano Lett., 2003, 3(3): 667.CrossRefADSGoogle Scholar
  20. [20]
    Sun Y., Gates B., Mayers B., and Xia Y., Crystalline silver nanowires by soft solution processing, Nano Lett., 2002, 2(2): 165.MATHCrossRefADSGoogle Scholar
  21. [21]
    Wiley B., Sun Y., Mayers B., and Xia Y., Shape-controlled synthesis of metal nanostructures: the case of silver, Chem. Eur. J., 2005, 11(2): 454.CrossRefGoogle Scholar
  22. [22]
    Yakutik I.M. and Shevchenko G.P., Self-organization of silver nanoparticles forming on chemical reduction to give monodisperse spheres, Surf. Sci., 2004, 566–568: 414.CrossRefGoogle Scholar
  23. [23]
    Sun X., Dong S., and Wang E., Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route, J. Colloid Interface Sci., 2005, 290(1): 130.CrossRefPubMedGoogle Scholar
  24. [24]
    Velikov K.P., Zegers G.E., and Van Blaaderen A., Synthesis and characterization of large colloidal silver particles, Langmuir, 2003, 19(4): 1384.CrossRefGoogle Scholar
  25. [25]
    Guray T.S. and Howard D.G., Process for Making Finely Divided Particles of Silver Metal, United State Patent, 4979985, 1990.Google Scholar
  26. [26]
    Ahn J.G., Kim D.J., Lee J.R., Jung H.S., and Kim B.G., Synthesis of mono-dispersed fine spherical silver powders by chemical reduction method, Mater. Sci. Forum, 2007, 539–543(3): 2782.CrossRefGoogle Scholar
  27. [27]
    Beradze D.L. and Shaplygin I.S., Production of very fine silver powders by reduction from solution, Zh. Neorg. Khim., 1984, 29(11): 2988.Google Scholar
  28. [28]
    Shaplygin I.S. and Kurnyavko V.K., Manufacture of fine metallic silver powders by a reduction technique, Powder Metall. Met. Ceram., 1973, 12(7): 517.CrossRefGoogle Scholar
  29. [29]
    Fischer C., Heller A., and Dube G., Preparation of silver powder with specific properties by reduction in organic medium: reduction of silver carbonate by ethylene glycol, Mater. Res. Bull., 1989, 24(10): 1271.CrossRefGoogle Scholar
  30. [30]
    Ueyama R., Harada M., Ueyama T., Harada A., Yamamoto T., Shiosaki T., and Kuribayashi K., Synthesis of monodispersed spherical single crystalline silver particles by wet chemical process, J. Ceram. Soc. Jpn., 1999, 107(1): 60.Google Scholar
  31. [31]
    Yang J., Qi L., Zhang D., Ma J., and Cheng H., Dextran- controlled crystallization of silver microcrystals with novel morphologies, Cryst. Growth Des., 2004, 4(6): 1371.CrossRefGoogle Scholar
  32. [32]
    Privman V., Goia D.V., Park J., and MatijeviĆ E., Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors, J. Colloid Interface Sci., 1999, 213(1): 36.CrossRefPubMedGoogle Scholar
  33. [33]
    Park J., Privman V., and MatijeviĆ E., Model of formation of monodispersed colloids, J. Phys. Chem. B, 2001, 105(47): 11630.CrossRefGoogle Scholar
  34. [34]
    Patrito M., Paredes O., and Sellers H., On the nature of the SO42− /Ag(111) and SO42− /Au(111) surface bonding, Surf. Sci., 1997, 380(2–3): 264.CrossRefADSGoogle Scholar
  35. [35]
    Zou X., Ying E., Chen H., and Dong S., An approach for synthesizing nanometer- to micrometer-sized silver nanoplates, Colloids Surf. A, 2007, 303(3): 226.CrossRefGoogle Scholar
  36. [36]
    Yang J., Lu L., Wang H., Shi W., and Zhang H., Glycyl glycine templating synthesis of single-crystal silver nanoplates, Cryst. Growth Des., 2006, 6(9): 2155.CrossRefGoogle Scholar

Copyright information

© Journal Publishing Center of University of Science and Technology Beijing and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Biologic and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina
  2. 2.School of Chemical and Environmental EngineeringWuhan Polytechnic UniversityWuhanChina

Personalised recommendations