Advertisement

OPSEARCH

pp 1–12 | Cite as

A mathematical model for supply chain management of blood banks in India

  • S. Dharmaraja
  • Srijan Narang
  • Vidyottama JainEmail author
Application Article
  • 31 Downloads

Abstract

This work begins with the understanding of the fundamentals of blood banking by analyzing various aspects of its supply chain and then examines the current scenario of blood shortage in India. A mathematical model is proposed to curb the mismatch between surplus and shortage of blood units at blood banks. This proposed model has three main echelons: forecast the demand of blood units at the blood bank; determine the optimal allocation of units from blood banks with surplus to a blood bank with shortage; select the optimal route for the delivery of the allocations. Further, it has been shown empirically with the previous years’ data that SARIMA model is a very efficient forecasting methodology in blood supply management.

Keywords

Blood bank Forecasting Blood transportation allocation model Vehicle routing 

Notes

References

  1. 1.
    Bray, T.J., Prabhakar, K.: Blood policy and transfusion practice in India. Trop. Med. Int. Health 7(6), 477–478 (2002)CrossRefGoogle Scholar
  2. 2.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis, Forecasting and Control. Wiley, New York (2015)Google Scholar
  3. 3.
    Cant, L.: Life-saving decisions: a model for optimal blood inventory management. Dissertation. Princeton University (2006)Google Scholar
  4. 4.
    Cheraghi, S., Hosseini Motlagh, S.M., Ghatreh Samani, M.R.: A robust optimization model for blood supply chain network design. Int. J. Ind. Eng. Prod. Res. 27(4), 425–444 (2016)Google Scholar
  5. 5.
    Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Op. Res. Soc. Am. 2(4), 393–410 (1954)Google Scholar
  6. 6.
    Drackley, A., Newbold, K.B., Paez, A., Heddle, N.: Forecasting Ontario’s blood supply and demand. Transfusion 52(2), 366–374 (2012)CrossRefGoogle Scholar
  7. 7.
    Frankfurter, G.M., Kendall, K.E., Pegels, C.C.: Management control of blood through a short-term supply–demand forecast system. Manag. Sci. 21(4), 444–452 (1974)CrossRefGoogle Scholar
  8. 8.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)CrossRefGoogle Scholar
  9. 9.
    Hoffman, K.L., Padberg, M., Rinaldi, G.: Traveling Salesman Problem. Encyclopedia of Operations Research and Management. Springer, New York (2013)Google Scholar
  10. 10.
    Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts, Melbourne (2018)Google Scholar
  11. 11.
    Indiastat, State-wise Number of Licensed Blood Banks in India. https://www.indiastat.com/table/health/16/bloodbanks19982015/449462/526977/data.aspx. Accessed 23 Apr 2017
  12. 12.
    Little, J.D., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the traveling salesman problem. Op. Res. 11(6), 972–989 (1963)CrossRefGoogle Scholar
  13. 13.
    Lowalekar, H., Ravichandran, N.: Blood bank inventory management in India. Opsearch 51(3), 376–399 (2014)CrossRefGoogle Scholar
  14. 14.
    Nagurney, A., Masoumi, A.H., Yu, M.: Supply chain network operations management of a blood banking system with cost and risk minimization. Comput. Manag. Sci. 9(2), 205–231 (2012)CrossRefGoogle Scholar
  15. 15.
    Or, I., Pierskalla, W.P.: A transportation location-allocation model for regional blood banking. AIIE Trans. 11(2), 86–95 (1979)CrossRefGoogle Scholar
  16. 16.
    Osorio, A.F., Brailsford, S.C., Smith, H.K.: A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. Int. J. Prod. Res. 53(24), 7191–7212 (2015)CrossRefGoogle Scholar
  17. 17.
    Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)CrossRefGoogle Scholar
  18. 18.
    Patel, A.: LOK SABHA UNSTARRED QUESTION NO. 2282. http://164.100.47.190/loksabhaquestions/annex/9/AU2282.pdf. Accessed 23 Apr 2017
  19. 19.
    Pereira, A.: Performance of time series methods in forecasting the demand for red blood cell transfusion. Transfusion 44(5), 739–746 (2004)CrossRefGoogle Scholar
  20. 20.
    Prastacos, G.P.: Blood inventory management: an overview of theory and practice. Manag. Sci. 30(7), 777–800 (1984)CrossRefGoogle Scholar

Copyright information

© Operational Research Society of India 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of MathematicsCentral University of RajasthanAjmerIndia

Personalised recommendations