Advertisement

OPSEARCH

, Volume 56, Issue 2, pp 539–562 | Cite as

ABC classification according to Pareto’s principle: a hybrid methodology

  • Siamak KheybariEmail author
  • S. Ali Naji
  • Fariba Mahdi Rezaie
  • Reza Salehpour
Application Article
  • 139 Downloads

Abstract

So far, many methods have been proposed to classify items based on ABC analysis, but the results of these methods have had relatively low compliance with the principles of ABC. More precisely, collective value and sometimes the number of items belonging to each category in the methods provided do not meet the basic requirements of ABC called Pareto’s principle. In this study, a number of hybrid methodologies including Shannon’s entropy, TOPSIS (the technique for order preference by similarity to ideal solution) and goal programming are respectively used for determining the weight of criteria which are effective in the inventory items classification, calculations of each item value and its classification based on Pareto’s principle. To this end, the value of each item as well as classification of inventory items is calculated based on Pareto’s principle. The performance of the proposed method is evaluated through (1) statistical analysis, (2) checking the percentage of similarity with other methods and (3) comparison with another method in terms of the number and value allocated to each class. The results confirm the capability of the listed method.

Keywords

ABC analysis Inventory items classification Shannon’s entropy TOPSIS Goal programming 

Notes

References

  1. 1.
    Hadi-Vencheh, A., Mohamadghasemi, A.: A fuzzy AHP-DEA approach for multiple criteria ABC inventory classification. Expert Syst. Appl. 38(4), 3346–3352 (2011)Google Scholar
  2. 2.
    Kabir, G.: Multiple criteria inventory classification under fuzzy environment. Int. J. Fuzzy Syst. Appl. (IJFSA) 2(4), 76–92 (2012)Google Scholar
  3. 3.
    Ramanathan, R.: ABC inventory classification with multiple-criteria using weighted linear optimization. Comput. Oper. Res. 33(3), 695–700 (2006)Google Scholar
  4. 4.
    Guvenir, H.A., Erel, E.: Multicriteria inventory classification using a genetic algorithm. Eur. J. Oper. Res. 105(1), 29–37 (1998)Google Scholar
  5. 5.
    Yu, M.-C.: Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Syst. Appl. 38(4), 3416–3421 (2011)Google Scholar
  6. 6.
    Flores, B.E., Whybark, D.C.: Implementing multiple criteria ABC analysis. J. Oper. Manag. 7(1–2), 79–85 (1987)Google Scholar
  7. 7.
    Ng, W.L.: A simple classifier for multiple criteria ABC analysis. Eur. J. Oper. Res. 177(1), 344–353 (2007)Google Scholar
  8. 8.
    Rezaei, J., Dowlatshahi, S.: A rule-based multi-criteria approach to inventory classification. Int. J. Prod. Res. 48(23), 7107–7126 (2010)Google Scholar
  9. 9.
    Chen, J.-X.: Multiple criteria ABC inventory classification using two virtual items. Int. J. Prod. Res. 50(6), 1702–1713 (2012)Google Scholar
  10. 10.
    Flores, B.E., Clay Whybark, D.J.I.J.O.O., Management, P.: Multiple criteria ABC analysis. Int. J. Oper. Prod. Manag. 6(3), 38–46 (1986)Google Scholar
  11. 11.
    Flores, B.E., Olson, D.L.: Dorai VJM (1992) Management of multicriteria inventory classification. Math. Comput. Model. 16(12), 71–82 (1992)Google Scholar
  12. 12.
    Partovi, F.Y., Hopton, W.E.J.P., Journal, I.M.: The analytic hierarchy process as applied to two types of inventory problems. Prod. Inventory Manag. J. 35(1), 13 (1994)Google Scholar
  13. 13.
    Gajpal, P.P., Ganesh, L., Rajendran, C.: Criticality analysis of spare parts using the analytic hierarchy process. Int. J. Prod. Econ. 35(1–3), 293–297 (1994)Google Scholar
  14. 14.
    Bhattacharya, A., Sarkar, B., Mukherjee, S.: Distance-based consensus method for ABC analysis. Int. J. Prod. Res. 45(15), 3405–3420 (2007)Google Scholar
  15. 15.
    Zhou, P., Fan, L.: A note on multi-criteria ABC inventory classification using weighted linear optimization. Eur. J. Oper. Res. 182(3), 1488–1491 (2007)Google Scholar
  16. 16.
    Tsai, C.-Y., Yeh, S.-W.: A multiple objective particle swarm optimization approach for inventory classification. Int. J. Prod. Econ. 114(2), 656–666 (2008)Google Scholar
  17. 17.
    Chu, C.-W., Liang, G.-S., Liao, C.-T.J.C.: Controlling inventory by combining ABC analysis and fuzzy classification. Comput. Ind. Eng. 55(4), 841–851 (2008)Google Scholar
  18. 18.
    Rezaei, J.: A note on multi-criteria inventory classification using weighted linear optimization. Yugosl. J. Oper. Res. 20(2), 293–299 (2010)Google Scholar
  19. 19.
    Hadi-Vencheh, A.: An improvement to multiple criteria ABC inventory classification. Eur. J. Oper. Res. 201(3), 962–965 (2010)Google Scholar
  20. 20.
    Xiao, Y.-Y., Zhang, R.-Q., Kaku, I.: A new approach of inventory classification based on loss profit. Expert Syst. Appl. 38(8), 9382–9391 (2011)Google Scholar
  21. 21.
    Torabi, S.A., Hatefi, S.M., Pay, B.S.: ABC inventory classification in the presence of both quantitative and qualitative criteria. Comput. Ind. Eng. 63(2), 530–537 (2012)Google Scholar
  22. 22.
    Kabir, G., Ahsan, M., Hasin, A.: Framework for benchmarking online retailing performance using fuzzy AHP and TOPSIS method. Int. J. Ind. Eng. Comput. 3(4), 561–576 (2012)Google Scholar
  23. 23.
    Kiriş, Ş.: Multi-criteria inventory classification by using a fuzzy analytic network process (ANP) approach. Informatica 24(2), 199–217 (2013)Google Scholar
  24. 24.
    Kabir, G., Akhtar Hasin, M.A.: Multi-criteria inventory classification through integration of fuzzy analytic hierarchy process and artificial neural network. Int. J. Ind. Syst. Eng. 14(1), 74–103 (2013)Google Scholar
  25. 25.
    Lolli, F., Ishizaka, A., Gamberini, R.: New AHP-based approaches for multi-criteria inventory classification. Int. J. Prod. Econ. 156, 62–74 (2014)Google Scholar
  26. 26.
    Soylu, B., Akyol, B.: Multi-criteria inventory classification with reference items. Comput. Ind. Eng. 69, 12–20 (2014)Google Scholar
  27. 27.
    Park, J., Bae, H., Bae, J.: Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification. Comput. Ind. Eng. 76, 40–48 (2014)Google Scholar
  28. 28.
    Hatefi, S.M., Torabi, S.A.: A common weight linear optimization approach for multicriteria ABC inventory classification. Adv. Decis. Sci. 2015, 1–11 (2015).  https://doi.org/10.1155/2015/645746 Google Scholar
  29. 29.
    Kaabi, H., Jabeur, K.: TOPSIS using a mixed subjective-objective criteria weights for ABC inventory classification. In: 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA) pp. 473–478. IEEE, New York (2015)Google Scholar
  30. 30.
    Kartal, H., Oztekin, A., Gunasekaran, A., Cebi, F.: An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Comput. Ind. Eng. 101, 599–613 (2016)Google Scholar
  31. 31.
    Douissa, M.R., Jabeur, K.: A new multi-criteria ABC inventory classification model based on a simplified Electre III method and the continuous variable neighborhood search. In: ILS 2016-6th International Conference on Information Systems, Logistics and Supply Chain (2016)Google Scholar
  32. 32.
    Kaabi, H., Alsulimani, T.: Novel hybrid multi-objectives multi-criteria ABC inventory classification model. In: Proceedings of the 2018 International Conference on Computers in Management and Business, pp. 79–82. ACM, New York (2018)Google Scholar
  33. 33.
    Hadi-Vencheh, A., Mohammadghasemi, A., Hosseinzadeh Lotfi, F., Khalil Zadeh, M.: Group multiple criteria ABC inventory classification using TOPSIS approach extended by Gaussian interval type-2 fuzzy sets and optimization programs, Scientia Iranica (2018).  https://doi.org/10.24200/sci.2018.5539.1332 (Articles in Press)
  34. 34.
    Rauf, M., Guan, Z., Sarfraz, S., Mumtaz, J., Almaiman, S., Shehab, E., Jahanzaib, M.: Multi-criteria inventory classification based on multi-criteria decision-making (MCDM) technique. In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden 2018, p. 343. IOS Press, AmsterdamGoogle Scholar
  35. 35.
    Zhao, M., Qiu, W.-H., Liu, B.-S.: Relative entropy evaluation method for multiple attribute decision making. Control Decis. 25(7), 1098–1100 (2010)Google Scholar
  36. 36.
    Hsu, P.-F., Hsu, M.-G.: Optimizing the information outsourcing practices of primary care medical organizations using entropy and TOPSIS. Qual. Quant. 42(2), 181–201 (2008)Google Scholar
  37. 37.
    Wu, J., Sun, J., Liang, L., Zha, Y.: Determination of weights for ultimate cross efficiency using Shannon entropy. Expert Syst. Appl. 38(5), 5162–5165 (2011)Google Scholar
  38. 38.
    Hwang, C.-L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey, vol. 186. Springer, Berlin (2012)Google Scholar
  39. 39.
    Yurdakul, M., Iç, Y.T.: Analysis of the benefit generated by using fuzzy numbers in a TOPSIS model developed for machine tool selection problems. J. Mater. Process. Technol. 209(1), 310–317 (2009)Google Scholar
  40. 40.
    Aouni, B., Kettani, O., Martel, J.-M.: Estimation through the imprecise goal programming model. In: Advances in Multiple Objective and Goal Programming, pp. 120–128. Springer, Berlin (1997)Google Scholar
  41. 41.
    Charnes, A., Cooper, W.: Analítico: management models and industrial applications of linear programming. Econometric Soc. 30(4), 841–843 (1967)Google Scholar

Copyright information

© Operational Research Society of India 2019

Authors and Affiliations

  1. 1.Department of ManagementFerdowsi University of MashhadMashhadIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations