pp 1–23 | Cite as

Ordered random variables

  • Saralees NadarajahEmail author
  • Emmanuel Afuecheta
  • Stephen Chan
Technical Note


Given two random variables, what effect does a linear ordering have? We answer this question for more than thirty commonly known families of distributions, including the arcsine, Cauchy, exponential, Fréchet, Gumbel, half normal, logistic, lognormal, Lomax, normal, Pareto, uniform and Weibull distributions. A real data application is given.


Distributions Rainfall Stochastic ordering 



The authors thank the editor and the referee for careful reading and comments.


  1. 1.
    Adam, M.B.: Stochastic ordering constraint for ordered extremes. Matematika 33, 21–34 (2017)CrossRefGoogle Scholar
  2. 2.
    Adam, M.B., Tawn, J.A.: Bivariate extreme analysis of Olympic swimming data. J. Stat. Theory Pract. 6, 510–523 (2012)CrossRefGoogle Scholar
  3. 3.
    Adamidis, K., Loukas, S.: A lifetime distribution with decreasing failure rate. Stat. Probab. Lett. 39, 35–42 (1998)CrossRefGoogle Scholar
  4. 4.
    Bain, L.J.: Analysis for the linear failure-rate life-testing distribution. Technometrics 16, 551–559 (1974)CrossRefGoogle Scholar
  5. 5.
    Belzunce, F., Martinez-Riquelme, C., Mulero, J.: An Introduction to Stochastic Orders. Academic Press, London (2015)Google Scholar
  6. 6.
    Chatterjee, A., Chatterjee, A.: Use of the Fréchet distribution for UPV measurements in concrete. NDT E Int. 52, 122–128 (2012)CrossRefGoogle Scholar
  7. 7.
    Chen, Q.M., Egan, D.M.: Predicting transformer service life using simplified Perks’ equation and Iowa curves. In: Proceedings of the 2006 power engineering society general meeting, pp. 4194–4200 (2006)Google Scholar
  8. 8.
    de Moivre, A.: The Doctrine of Chances. ISBN 0821821032 (1738)Google Scholar
  9. 9.
    Fantazzini, P., Brown, R.J.S.: Initially linear echo-spacing dependence of I/T-2 measurements in many porous media with pore-scale inhomogeneous fields. J. Magn. Reson. 177, 228–235 (2005)CrossRefGoogle Scholar
  10. 10.
    Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–290 (1928)CrossRefGoogle Scholar
  11. 11.
    Fréchet, M.: Sur la loi de probabilité de l’écart maximum. Ann. Soc. Pol. Math. 6, 92–116 (1927)Google Scholar
  12. 12.
    Gauss, C.F.: Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm (in Latin) (1809)Google Scholar
  13. 13.
    Gumbel, E.J.: Statistical theory of extreme values and some practical applications. In: Applied Mathematics Series, Volume 33, United States Department of Commerce, National Bureau of Standards (1954)Google Scholar
  14. 14.
    Holland, O., Golaup, A., Aghvami, A.H.: Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration. IEE Proc. Commun. 153, 683–690 (2006)CrossRefGoogle Scholar
  15. 15.
    Hosking, J.R.M.: The theory of probability weighted moments. In: IBM Research Report PC12210 (1989)Google Scholar
  16. 16.
    Hosking, J.R.M.: \(L\)-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. B 52, 105–124 (1990)Google Scholar
  17. 17.
    Hsing, T.: On the asymptotic independence of the sum and rare values of weakly dependent stationary random variables. Stoch. Process. Their Appl. 60, 49–63 (1995)CrossRefGoogle Scholar
  18. 18.
    Kleiber, C., Kotz, S.: Statistical Size Distributions in Economics and Actuarial Sciences. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  19. 19.
    Kokonendji, C.C., Khoudar, M.: On strict arcsine distribution. Commun. Stat. Theory Methods 33, 993–1006 (2004)CrossRefGoogle Scholar
  20. 20.
    Lehmann, E.A., Phatak, A., Stephenson, A., Lau, R.: Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change. Environmetrics 27, 239–251 (2016)CrossRefGoogle Scholar
  21. 21.
    Lin, C., Ou, J.P.: Study and application of China’s freeze-thaw action spectrums for life-cycle structure design. In: Lin, P.P., Zhang C.L. (eds) Vibration, Structural Engineering and Measurement, pp. 777–783 (2012)Google Scholar
  22. 22.
    Lindsey, J.K., Byrom, W.D., Wang, J., Jarvis, P., Jones, B.: Generalized nonlinear models for pharmacokinetic data. Biometrics 56, 81–88 (2000)CrossRefGoogle Scholar
  23. 23.
    Lisek, B.: Comparability of special distributions. Statistics 9, 537–593 (1978)Google Scholar
  24. 24.
    Lomax, K.S.: Business failures: another example of the analysis of failure data. J. Am. Stat. Assoc. 49, 847–852 (1954)CrossRefGoogle Scholar
  25. 25.
    Marshall, A.W., Olkin, I.: A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84, 641–652 (1997)CrossRefGoogle Scholar
  26. 26.
    Mizutani, T., Kumar, A., Hiramoto, T.: Statistical analysis of current onset voltage (COV) distribution of scaled MOSFETs. IEICE Trans. Electron. E96C, 630–633 (2013)CrossRefGoogle Scholar
  27. 27.
    Nadarajah, S., Anderson, C.W., Tawn, J.A.: Ordered multivariate extremes. J. R. Stat. Soc. B 60, 473–496 (1998)CrossRefGoogle Scholar
  28. 28.
    Nadarajah, S., Haghighi, F.: An extension of the exponential distribution. Statistics 45, 543–558 (2011)CrossRefGoogle Scholar
  29. 29.
    Olson, D.L., Wu, D.S.: The impact of distribution on value-at-risk measures. Math. Comput. Model. 58, 1670–1676 (2013)CrossRefGoogle Scholar
  30. 30.
    Paradis, E., Baillie, S.R., Sutherland, W.J.: Modeling large-scale dispersal distances. Ecol. Model. 151, 279–292 (2002)CrossRefGoogle Scholar
  31. 31.
    Pareto, V.: Cours d’Économie Politique: Nouvelle édition par G.-H. Bousquet et G. Busino, Librairie Droz, Geneva, pp. 299–345 (1964)Google Scholar
  32. 32.
    Pawlak, M., Yahampath, P.: On construction and simulation of autoregressive sources with near-Laplace marginals. IEEE Trans. Signal Process. 58, 5550–5559 (2010)CrossRefGoogle Scholar
  33. 33.
    Perks, W.: On some experiments in the graduation of mortality statistics. J. Inst. Actuar. 63, 12–40 (1932)CrossRefGoogle Scholar
  34. 34.
    Pham, H.: A vtub-shaped hazard rate function with applications to system safety. Int. J. Reliab. Appl. 3, 1–16 (2002)Google Scholar
  35. 35.
    Pham, H.: Systemability with loglog distributions. In: Proceedings of the 18th ISSAT International Conference on Reliability and Quality in Design, pp. 39–43 (2012)Google Scholar
  36. 36.
    Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)CrossRefGoogle Scholar
  37. 37.
    Rao, B.S., Rao, B.V.P., Kantam, R.R.L.: Software reliability growth model based on half logistic distribution. J. Test. Eval. 39, 1152–1157 (2011)Google Scholar
  38. 38.
    Schabe, H.: Constructing lifetime distributions with bathtub shaped failure rate from DFR distributions. Microelectron. Reliab. 34, 1501–1508 (1994)CrossRefGoogle Scholar
  39. 39.
    Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)CrossRefGoogle Scholar
  40. 40.
    Stephenson, A.G., Lehmann, E.A., Phatak, A.: A max-stable process model for rainfall extremes at different accumulation durations. Weather Clim. Extrem. 13, 44–53 (2016)CrossRefGoogle Scholar
  41. 41.
    Taylor, J.M.: Comparisons of certain distribution functions. Statistics 14, 397–408 (1983)Google Scholar
  42. 42.
    Tyralis, H., Langousis, A.: Estimation of intensity–duration–frequency curves using max-stable processes. Stoch. Environ. Res. Risk Assess. (2018a)
  43. 43.
    Tyralis, H., Langousis, A.: Modelling of rainfall maxima at different durations using max-stable processes. In: Proceedings of the EGU General Assembly Conference (2018b)Google Scholar
  44. 44.
    Topp, C.W., Leone, F.C.: A family of \(J\)-shaped frequency functions. J. Am. Stat. Assoc. 50, 209–219 (1955)CrossRefGoogle Scholar
  45. 45.
    van de Vyver, H.: Bayesian estimation of rainfall intensity–duration–frequency relationships. J. Hydrol. 529, 1451–1463 (2015)CrossRefGoogle Scholar
  46. 46.
    van Dorp, J.R., Kotz, S.: Estimating income distributions using elevated distributions on a bounded domain. Unpublished manuscript (2003)Google Scholar
  47. 47.
    Verhoef, C.: Quantitative IT portfolio management. Sci. Comput. Program. 45, 1–96 (2002)CrossRefGoogle Scholar
  48. 48.
    Vlahogianni, E.I.: Modeling duration of overtaking in two lane highways. Transp. Res. Part F Traffic Psychol. Behav. 20, 135–146 (2013)CrossRefGoogle Scholar
  49. 49.
    Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)Google Scholar
  50. 50.
    Zhang, T., Xie, M., Tang, L.C., Ng, S.H.: Reliability and modeling of systems integrated with firmware and hardware. Int. J. Reliab. Qual. Saf. Eng. 12, 227–239 (2005). CrossRefGoogle Scholar
  51. 51.
    Zhang, W.Z., Kang, Q.R.: Cusp-catastrophic mechanism for shallow landslide instability under heavy rainfall. Disaster Adv. 5, 196–200 (2012)Google Scholar

Copyright information

© Operational Research Society of India 2019

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK
  2. 2.American University of SharjahSharjahUAE

Personalised recommendations