Advertisement

OPSEARCH

pp 1–13 | Cite as

Reverse 1-maxian problem with keeping existing 1-median

  • Ali Reza SepasianEmail author
Theoretical Article
  • 4 Downloads

Abstract

Here we investigate the reverse 1-maxian problem when it is necessary to keep 1-median of a given network. This problem asks to modify the parameters of the network so that the 1-median does not change and the candidate place for 1-maxian improves as much as possible. For the uniform-cost model on a tree graph, an algorithm with \(O(n \log n)\) time complexity is developed. It is also shown that the problem is solvable in linear time where it is only allowed to increase the vertex weights.

Keywords

Facility location 1-maxian problem Reverse optimization Obnoxious location problem 

Mathematics Subject Classification

90C35 90C27 90C05 

Notes

References

  1. 1.
    Krarup, J., Pisinger, D., Plastria, F.: Discrete location problems with push–pull objectives. Discrete Appl. Math. 123, 363–378 (2002)CrossRefGoogle Scholar
  2. 2.
    Berman, O., Ingco, D.I., Odoni, A.: Improving the location of minsum facilities through network modification. Ann. Oper. Res. 40, 1–16 (1992)CrossRefGoogle Scholar
  3. 3.
    Berman, O., Ingco, D.I., Odoni, A.R.: Improving the location of minmax facilities through network modification. Networks 24, 31–41 (1994)CrossRefGoogle Scholar
  4. 4.
    Zhang, J.Z., Liu, Z.H., Ma, Z.F.: Some reverse location problems. Eur. J. Oper. Res. 124, 77–88 (2000)CrossRefGoogle Scholar
  5. 5.
    Nguyen, K.T.: reverse 1-center problem on weighted trees. Optimization 65(1), 253–264 (2016)CrossRefGoogle Scholar
  6. 6.
    Burkard, R.E., Gassner, E., Hatzl, J.: A linear time algorithm for the reverse 1-median problem on a cycle. Networks 48, 16–23 (2006)CrossRefGoogle Scholar
  7. 7.
    Burkard, E.R., Gassner, E., Hatzl, J.: Reverse 2-median problem on trees. Discrete Appl. Math. 156, 1963–1976 (2008)CrossRefGoogle Scholar
  8. 8.
    Alizadeh, B., Etemad, R.: Linear time optimal approaches for reverse obnoxious center location problems on networks. Optimization 65(11), 2025–2036 (2016)CrossRefGoogle Scholar
  9. 9.
    Etemad, R., Alizadeh, B.: Reverse selective obnoxious center location problems on tree graphs. Math. Methods Oper. Res. 87, 431–450 (2017).  https://doi.org/10.1007/s00186-017-0624-y CrossRefGoogle Scholar
  10. 10.
    Etemad, R., Alizade, B.: Some variants of reverse selective center location problem on trees under the Chebyshev and Hamming norms. Yugosl. J. Oper. Res. 27(3), 367–384 (2016)CrossRefGoogle Scholar
  11. 11.
    Gassner, E.: The Inverse 1-maxian problem with edge length modification. J. Comb. Optim. 16(1), 50–67 (2008)CrossRefGoogle Scholar
  12. 12.
    Burkard, R.E., Pleschiutschnig, C., Zhang, J.: Inverse median problems. Discrete Optim. 1, 23–39 (2004)CrossRefGoogle Scholar
  13. 13.
    Burkard, R.E., Pleschiutschnig, C., Zhang, J.: Inverse median problem on a cycle. Discrete Optim. 5, 242–253 (2009)CrossRefGoogle Scholar
  14. 14.
    Sepasian, A.R., Rahbarnia, F.: An \(O(n \log n)\) algorithm for the Inverse 1-median problem on trees with variable vertex weights and edge reductions. Optimization 64(3), 595–602 (2015)Google Scholar
  15. 15.
    Nguyen, KT: Inverse 1-median problem on block graphs with variable vertex weights. J. Optim. Theory Appl. 168(3), 944–957 (2016)CrossRefGoogle Scholar
  16. 16.
    Alizadeh, B., Etemad, R.: Optimal algorithms for inverse vertex obnoxious center location problems on graphs. Theor. Comput. Sci. 707, 36–45 (2016)CrossRefGoogle Scholar
  17. 17.
    Nguyen, K.T., Sepasian, A.R.: The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance. J. Comb. Optim. 32(3), 872–884 (2016)CrossRefGoogle Scholar
  18. 18.
    Goldman, A.J.: Optimal center location in simple networks. Transp. Sci. 2, 77–91 (1962)Google Scholar

Copyright information

© Operational Research Society of India 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Basic SciencesFasa UniversityFasaIran

Personalised recommendations