OPSEARCH

, Volume 55, Issue 3–4, pp 807–822

Some properties of geodesic E-preinvex function and geodesic semi E-preinvex function on Riemannian manifolds

• Babli Kumari
• Anurag Jayswal
Application Article

Abstract

In the present paper, the notion of geodesic E-preinvex function and geodesic semi E-preinvex function are introduced on Riemannian manifold. Moreover, several properties, results and relations are studied within aforesaid functions. An example is also constructed to illustrate the definition of geodesic E-preinvex function. In addition, we have studied the optimality results with the help of geodesic E-preinvex and geodesic semi E-preinvex functions.

Keywords

Geodesic E-invex set Geodesic E-preinvex function Geodesic semi E-preinvex function Riemannian manifold

Mathematics Subject Classification

58B20 53C22 26A51

Notes

Acknowledgements

The authors are thankful to referees for their valuable remarks which improved the results and presentation of this article. This work is financially supported by the Council of Scientific and Industrial Research, New Delhi, India through Grant No.: 25(0266)/17/EMR-II.

References

1. 1.
Agarwal, R.P., Ahmad, I., Iqbal, A., Ali, S.: Generalized invex sets and preinvex functions on Riemannian manifolds. Taiwan. J. Math. 16, 1719–1732 (2012)
2. 2.
Ahmad, I., Iqbal, A., Ali, S.: On properties of geodesic $$\eta$$-preinvex functions. Adv. Oper. Res. 2009, 1–10 (2009)
3. 3.
Antczak, T.: $$r$$-Preinvexity and $$r$$-invexity in mathematical programming. Comput. Math. Appl. 50, 551–566 (2005)
4. 4.
Barani, A., Pouryayevali, M.R.: Invex sets and preinvex functions on Riemannian manifolds. J. Math. Anal. Appl. 328, 767–779 (2007)
5. 5.
Ben-Israel, A., Mond, B.: What is the invexity. J. Aust. Math. Soc. 28, 1–9 (1986)
6. 6.
Duca, D.I., Duca, E., Lupsa, L., Blaga, R.: $$E$$-convex functions. Bull. Appl. Comput. Math. 43, 93–103 (2000)Google Scholar
7. 7.
Duca, D.I., Lupsa, L.: On the E-epigraph of an $$E$$-convex function. J. Optim. Theory Appl. 120, 341–346 (2006)
8. 8.
Fulga, C., Preda, V.: Nonlinear programming with $$E$$-preinvex and local $$E$$-preinvex functions. Eur. J. Oper. Res. 192, 737–743 (2009)
9. 9.
Hanson, M.A.: On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981)
10. 10.
Iqbal, A., Ahmad, I., Ali, S.: Some properties of geodesic semi-$$E$$-convex functions. Nonlinear Anal. 74, 6805–6813 (2011)
11. 11.
Iqbal, A., Ali, S., Ahmad, I.: On geodesic $$E$$-convex sets, geodesic $$E$$-convex functions and E-epigraph. J. Optim. Theory Appl. 55, 239–251 (2012)
12. 12.
Jeyakumar, V.: Strong and weak invexity in mathematical programming. Math. Oper. Res. 55, 109–125 (1985)Google Scholar
13. 13.
Kiliçman, A., Saleh, W.: On geodesic strongly $$E$$-convex sets and geodesic strongly $$E$$-convex functions. J. Ineq. Appl. 2015, 1–10 (2015)
14. 14.
Kiliçman, A., Saleh, W.: Some properties of geodesic semi $$E$$-$$b$$-Vex function. Open Math. 13, 795–804 (2015)
15. 15.
Kiliçman, A., Saleh, W.: On geodesic semi strongly $$E$$-convex functions. J. Interdiscip. Math. 19, 1039–1055 (2016)
16. 16.
Lang, S.: Fundamental of Differential Geometry, Graduate Texts in Mathematics. Springer, New York (1999)
17. 17.
Mititelu, S.: Generalized invexity and vector optimization on differential manifolds. Differ. Geom. Dyn. Syst. 3, 21–31 (2001)Google Scholar
18. 18.
Noor, M.A.: Variational-like inequality. Optimization 30, 323–330 (1994)
19. 19.
Pini, R.: Convexity along curves and invexity. Optimization 29, 301–309 (1994)
20. 20.
Porwal, S.K.: Geodesic semilocal $$E$$-$$b$$-Vex functions on Riemannian manifolds. Adv. Model. Optim. 20, 395–405 (2018)Google Scholar
21. 21.
Rapcsak, T.: Smooth Nonlinear Optimization in $$R^n$$. Kluwer Academic, Dordrecht (1997)
22. 22.
Syau, Y.R., Lee, E.S.: Some properties of $$E$$-convex functions. Appl. Math. Lett. 18, 1074–1080 (2005)
23. 23.
Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic, Dordrecht (1994). (Math. Appl.)
24. 24.
Weir, T., Mond, B.: Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 136, 29–38 (1988)
25. 25.
Yang, X.M.: On $$E$$-convex sets, $$E$$-convex functions and $$E$$-convex programming. J. Optim. Theory Appl. 109, 699–704 (2001)
26. 26.
Youness, E.A.: On $$E$$-convex sets, $$E$$-convex functions and $$E$$-convex programming. J. Optim. Theory Appl. 102, 439–450 (1999)