OPSEARCH

, Volume 55, Issue 3–4, pp 662–676

# Duality in the fuzzy-parametric space for fuzzy-parametric nonlinear programming problem

• M. S. Osman
• A. M. Abd Elazeem
• M. A. Elsisy
• M. M. Rashwan
Theoretical Article

## Abstract

The concepts of fuzziness and parametric analysis are of importance to treat uncertainty in mathematical model and may offer certain more viewpoints. The basic notions of the parametric study in nonlinear programming problem are presented by Osman (Aplikace matematiky 22(5):318–332, 1977; Aplikace matematiky 22(5):333–348, 1977). In general, a parametric programming problem is not easy to be solved. In addition, sometime, solving a parametric programming problem with parameters in the objective is easier than solving a parametric problem with parameters in the constraints and vice versa. Therefore, a parametric study in duality space is important to facilitate solving a parametric programming problem. The fuzzy nonlinear problem is interested area for research as one of the tools for treating uncertainty. The fuzzy nonlinear problem when parameters in the objective function or constrains or both is called the fuzzy parametric nonlinear problem. Therefore, dealing with fuzziness and duality parametric space is concerned. In this paper, a novelty introduction to the fuzzy basic notions of parametric programming problem are clarified, the relations between the concepts concerning duality in parametric spaces which introduced by Osman et al. (Int J Math Arch 6(12):161–165, 2016) and the fuzzy concepts are presented. We present and define the fuzzy parametric notions of the set of feasible parameters, the solvability set, and the stability sets of the first and second kind. These notions are not defined before. The theoretical relations and an illustration example are introduced.

## Keywords

Nonlinear programming problem Parametric Duality Fuzzy set Fuzzy nonlinear programming problem

## References

1. 1.
Bayoumi, M.A., Abd El-azeem, A.E.M.: η-Measurement for finding the best efficient solution for multiobjective programming problems. Int. J. Comput. Internet Manag. 18(2), 1–7 (2010)Google Scholar
2. 2.
Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), 141 (1970)
3. 3.
Ben, A.F., Masri, H.: A compromise solution for the multiobjective stochastic linear programming under partial uncertainty. Eur. J. Oper. Res. 202, 55–59 (2010)
4. 4.
Dauer, J.P., Osman, M.S.A.: Decomposition of the parametric space in multiobjective convex programs using the generalized Tchebycheff norm. J. Math. Anal. Appl. 107(1), 156–166 (1985)
5. 5.
Dutta, P., Boruah, H., Ali, T.: Fuzzy arithmetic with and without using α-cut method: a comparative study. Int. J. Latest Trends Comput. 2(1), 99–107 (2011)Google Scholar
6. 6.
Garg, H.: Multi-objective optimization problem of system reliability under intuitionistic fuzzy set environment using Cuckoo Search algorithm. J. Intell. Fuzzy Syst. 29(4), 1653–1669 (2015)
7. 7.
Garg, H., Rani, M., Sharma, S.P., Vishwakarma, Y.: Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment. Expert Syst. Appl. 41(7), 3157–3167 (2014)
8. 8.
Garg, H., Rani, M., Sharma, S.P., Vishwakarma, Y.: Bi-objective optimization of the reliability-redundancy allocation problem for series-parallel system. J. Manuf. Syst. 33(3), 335–347 (2014)
9. 9.
Garg, H., Sharma, S.P.: Fuzzy multi-objective optimization of a synthesis unit utilizing uncertain data. J. Uncertain Syst. 7(1), 13–21 (2013)Google Scholar
10. 10.
Liu, G.P., Yang, J.B., Whidborne, J.F.: Multiobjective Optimisation and Control. Research Studies Press Ltd, Baldock (2003)Google Scholar
11. 11.
Hamadameen, A.O., Zainuddin, Z.M.: Multiobjective fuzzy stochastic linear programming problems in the 21st century. Life Sci. J. 10(4), 616–647 (2013)Google Scholar
12. 12.
Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science, vol. 12 (1998). ISBN: 978-1-4613-7544-9 (Print), 978-1-4615-5563-6 (Online)Google Scholar
13. 13.
Muñoz, M.M., Ben Abdelaziz, F.: Satisfactory solution concepts and their relations for stochastic multiobjective programming problems. Eur. J. Oper. Res. 220, 430–442 (2012)
14. 14.
Osman, M.S.A.: Qualitative analysis of basic notions in parametric convex programming. I. Parameters in the constraints. Aplikace matematiky 22(5), 318–332 (1977)Google Scholar
15. 15.
Osman, M.S.A.: Qualitative analysis of basic notions in parametric convex programming. II. Parameters in the objective function. Aplikace matematiky 22(5), 333–348 (1977)Google Scholar
16. 16.
Osman, M.S., Tarrad, M.M., Osman, M.A.: Duality in the parametric spaces for parametric nonlinear programming problems. Int. J. Math. Arch. 6(12), 161–165 (2016)Google Scholar
17. 17.
Rani, D., Gulati, T.R., Garg, H.: Multi-objective non-linear programming problem in intuitionistic fuzzy environment: optimistic and pessimistic view point. Expert Syst. Appl. 64, 228–238 (2016)
18. 18.
Sakawa, M., Katagiri, H., Matsui, T.: Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity. Int. J. Mach. Learn. Cybern. 3(3), 183–192 (2012)
19. 19.
Sakawa, M., Katagiri, H., Matsui, T.: Stackelberg solutions for fuzzy random two-level linear programming through probability maximization with possibility. Fuzzy Sets Syst. 188(1), 45–57 (2012)
20. 20.
Utyuzhnikov, S.V., Fantini, P., Guenov, M.D.: A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization. J. Comput. Appl. Math. 223(2), 820–841 (2009)

© Operational Research Society of India 2018

## Authors and Affiliations

• M. S. Osman
• 1
• A. M. Abd Elazeem
• 2
• M. A. Elsisy
• 3
Email author
• M. M. Rashwan
• 4
1. 1.Al Asher UniversityEl Asher CityEgypt
2. 2.October High Institute for Engineering and TechnologyGizaEgypt
3. 3.Faculty of Engineering at BenhaBenha UniversityBenhaEgypt
4. 4.Faculty of Economics and Political ScienceCairo UniversityCairoEgypt