Advertisement

OPSEARCH

, Volume 55, Issue 3–4, pp 721–748 | Cite as

Multi-objective bi-level supply chain network order allocation problem under fuzziness

  • Srikant GuptaEmail author
  • Irfan Ali
  • Aquil Ahmed
Application Article

Abstract

In this paper we addressed supply chain network (SCN) as bi-level programming problem in which the primary objective is to determine optimal order allocation of products where the customer’s demands and supply for the products are fuzzy. In the proposed SCN model, we suppose that the first level (leader) and second level (follower) operate two separate groups of SCN. The leader, who moves first, determines quantities shipped to retailers, and then, the follower decides his quantities rationally. The leader’s objective is to minimize the total transportation costs, and similarly, the follower’s objective is to minimize the total delivery time of the SCN and at the same time balancing the optimal order allocation from each source, plant, retailer and warehouse respectively. The fuzzy goal programming approach has been used to achieve the highest degree of the membership goals by minimizing the deviational variables so that most satisfactory or the preferred solution for both the levels to be obtained. A numerical example is given to demonstrate the proposed methodology.

Keywords

Supply chain network Multi-objective optimization Bi-level programming problem Trapezoidal fuzzy number \(\alpha\)-cut approach Fuzzy goal programming 

References

  1. 1.
    Feili, H., Khoshdoon, M.: A fuzzy optimization model for supply chain production planning with an atotal aspect of decision making. J. Math. Comput. Sci. 2(1), 65–80 (2011)CrossRefGoogle Scholar
  2. 2.
    Liu, S.T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661–674 (2004)CrossRefGoogle Scholar
  3. 3.
    Liang, T.F.: Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets Syst. 157(10), 1303–1316 (2006)CrossRefGoogle Scholar
  4. 4.
    Liang, T.F.: Applying fuzzy goal programming to production/transportation planning decisions in a supply chain. Int. J. Syst. Sci. 38(4), 293–304 (2007)CrossRefGoogle Scholar
  5. 5.
    Sakawa, M., Nishizaki, I., Uemura, Y.: Fuzzy programming and profit and cost allocation for a production and transportation problem. Eur. J. Oper. Res. 131(1), 1–15 (2001)CrossRefGoogle Scholar
  6. 6.
    Selim, H., Araz, C., Ozkarahan, I.: Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp. Res. Part E Logist. Transp. Rev. 44(3), 396–419 (2008)CrossRefGoogle Scholar
  7. 7.
    Aliev, R.A., Fazlollahi, B., Guirimov, B.G., Aliev, R.R.: Fuzzy-genetic approach to aggregate production-distribution planning in supply-chain management. Inf. Sci. 177(20), 4241–4255 (2007)CrossRefGoogle Scholar
  8. 8.
    Chen, S.P., Chang, P.C.: A mathematical programming approach to supply chain models with fuzzy parameters. Eng. Optim. 38(6), 647–669 (2006)CrossRefGoogle Scholar
  9. 9.
    Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159(2), 193–214 (2008)CrossRefGoogle Scholar
  10. 10.
    Peidro, D., Mula, J., Poler, R.: Supply chain planning under uncertainty: a fuzzy linear programming approach. In: Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International, pp. 1–6. IEEE (2007)Google Scholar
  11. 11.
    Gen, M., Tsujimura, Y., Ida, K.: Method for solving multiobjective aggregate production planning problem with fuzzy parameters. Comput. Ind. Eng. 23(1–4), 117–120 (1992)CrossRefGoogle Scholar
  12. 12.
    Gumus, A.T., Guneri, A.F., Keles, S.: Supply chain network designusing an integrated neuro-fuzzy and MILP approach: a comparative design study. Expert Syst. Appl. 36(10), 12570–12577 (2009)CrossRefGoogle Scholar
  13. 13.
    Bilgen, B.: Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem. Expert Syst. Appl. 37(6), 4488–4495 (2010)CrossRefGoogle Scholar
  14. 14.
    Fahimnia, B., Farahani, R.Z., Marian, R., Luong, L.: A review and critique on integrated production-distribution planning models and techniques. J. Manuf. Syst. 32(1), 1–19 (2013)CrossRefGoogle Scholar
  15. 15.
    Jolai, F., Razmi, J., Rostami, N.K.M.: A fuzzy goal programming and metaheuristic algorithms for solving integrated production: distribution planning problem. CEJOR 19(4), 547–569 (2011)CrossRefGoogle Scholar
  16. 16.
    Paksoy, T., Pehlivan, N.Y.: A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions. J. Franklin Inst. 349(1), 93–109 (2012)CrossRefGoogle Scholar
  17. 17.
    Garai, A., Mandal, P., Roy, T.K.: Intuitionistic fuzzy T-sets based optimization technique for production-distribution planning in supply chain management. OPSEARCH 53(4), 950–975 (2016)CrossRefGoogle Scholar
  18. 18.
    Abo-Sinna, M.A., Baky, I.A.: Fuzzy goal programming procedure to bilevel multiobjective linear fractional programming problems. Int. J. Math. Math. Sci. 2010, 148975 (2010).  https://doi.org/10.1155/2010/148975 CrossRefGoogle Scholar
  19. 19.
    Baky, I.A.: Fuzzy goal programming algorithm for solving decentralised-level multi-objective programming problems. Fuzzy Sets Syst. 160(18), 2701–2713 (2009)CrossRefGoogle Scholar
  20. 20.
    Bialas, W.F., Karwan, M.H.: Two-level linear programming. Manag. Sci. 30(8), 1004–1020 (1984)CrossRefGoogle Scholar
  21. 21.
    Baky, I.A., Eid, M.H., El Sayed, M.A.: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm. Opsearch 51(2), 280–296 (2014)CrossRefGoogle Scholar
  22. 22.
    Birla, R., Agarwal, V.K., Khan, I.A., Mishra, V.N.: An alternative approach for solving bi-level programming problems. Am. J. Oper. Res. 7(03), 239 (2017)Google Scholar
  23. 23.
    Bagloee, S.A., Asadi, M., Sarvi, M., Patriksson, M.: A hybrid machine-learning and optimization method to solve bi-level problems. Expert Syst. Appl. 95, 142–152 (2018)CrossRefGoogle Scholar
  24. 24.
    Osman, M.S., Emam, O.E., Elsayed, M.A.: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters. Beni-Suef Univ. J. Basic Appl. Sci. 7(1), 139–149 (2018)CrossRefGoogle Scholar
  25. 25.
    Osman, M.S., Emam, O.E., El Sayed, M.A.: Solving multi-level multi-objective fractional programming problems with fuzzy demands via FGP approach. Int. J. Appl. Comput. Math. 4(1), 41 (2018)CrossRefGoogle Scholar
  26. 26.
    Golpîra, H., Najafi, E., Zandieh, M., Sadi-Nezhad, S.: Robust bi-level optimization for green opportunistic supply chain network design problem against uncertainty and environmental risk. Comput. Ind. Eng. 107, 301–312 (2017)CrossRefGoogle Scholar
  27. 27.
    Jalil, S.A., Javaid, S., Muneeb, S.M.: A decentralized multi-level decision making model for solid transportation problem with uncertainty. Int. J. Syst. Assur. Eng. Manag (2018).  https://doi.org/10.1007/s13198-018-0720-2 CrossRefGoogle Scholar
  28. 28.
    Muneeb, S.M., Adhami, A.Y., Asim, Z., Jalil, S.A.: Bi-level decision making models for advertising allocation problem under fuzzy environment. Int. J. Syst. Assur. Eng. Manag (2018).  https://doi.org/10.1007/s13198-018-0723-z CrossRefGoogle Scholar
  29. 29.
    Adhami, A.Y., Muneeb, S.M., Nomani, M.A.: A multi-level decision making model for the supplier selection problem in a fuzzy situation. Oper. Res. Decis. 27(4), 5–26 (2017)Google Scholar
  30. 30.
    Muneeb, S.M., Adhami, A.Y., Jalil, S.A., Asim, Z.: Decentralised bi-level decision planning model for municipal solid waste recycling and management with cost reliability under uncertain environment. Sustain. Prod. Consum (2018).  https://doi.org/10.1016/j.spc.2018.05.009 CrossRefGoogle Scholar
  31. 31.
    Amirtaheri, O., Zandieh, M., Dorri, B., Motameni, A.R.: A bi-level programming approach for production-distribution supply chain problem. Comput. Ind. Eng. 110, 527–537 (2017)CrossRefGoogle Scholar
  32. 32.
    Kolak, Oİ., Feyzioğlu, O., Noyan, N.: Bi-level multi-objective traffic network optimisation with sustainability perspective. Expert Syst. Appl. 104, 294–306 (2018)CrossRefGoogle Scholar
  33. 33.
    Jin, S.W., Li, Y.P., Nie, S.: An integrated bi-level optimization model for air quality management of Beijing’s energy system under uncertainty. J. Hazard. Mater. 350, 27–37 (2018)CrossRefGoogle Scholar
  34. 34.
    Parvasi, S.P., Mahmoodjanloo, M., Setak, M.: A bi-level school bus routing problem with bus stops selection and possibility of demand outsourcing. Appl. Soft Comput. 61, 222–238 (2017)CrossRefGoogle Scholar
  35. 35.
    Zeng, Q., Zhang, B., Fang, J., Chen, Z.: A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system. Appl. Energy 200, 192–203 (2017)CrossRefGoogle Scholar
  36. 36.
    Ryu, J., Dua, V., Pistikopoulos, E.N.: A bilevel programming framework for enterprise-wide process networks under uncertainty. Comput. Chem. Eng. 28(6–7), 1121–1129 (2004)CrossRefGoogle Scholar
  37. 37.
    Chang, Y., Lee, C.: Machine scheduling with job delivery coordination. Eur. J. Oper. Res. 158(2), 470–487 (2004)CrossRefGoogle Scholar
  38. 38.
    Lejeune, M.A.: A variable neighbourhood decomposition search method for supply chain management planning problems. Eur. J. Oper. Res. 175(2), 959–976 (2006)CrossRefGoogle Scholar
  39. 39.
    Sadigh, A.N., Mozafari, M., Karimi, B.: Manufacturer–retailer supply chain coordination: A bi-level programming approach. Adv. Eng. Softw. 45(1), 144–152 (2012)CrossRefGoogle Scholar
  40. 40.
    Nishi, T., Yoshida, O.: Optimization of multi-period bilevel supply chains under demand uncertainty. Procedia CIRP 41, 508–513 (2016)CrossRefGoogle Scholar
  41. 41.
    Calvete, H.I., Galé, C., Oliveros, M.J.: Bilevel model for production–distribution planning solved by using ant colony optimization. Comput. Oper. Res. 38(1), 320–327 (2011)CrossRefGoogle Scholar
  42. 42.
    Camacho-Vallejo, J.F., Cordero-Franco, Á.E., González-Ramírez, R.G.: Solving the bilevel facility location problem under preferences by a stackelberg-evolutionary algorithm. Math. Probl. Eng. 2014, 430243 (2014).  https://doi.org/10.1155/2014/430243 CrossRefGoogle Scholar
  43. 43.
    Huang, B., Liu, N.: Bilevel programming approach to optimizing a logistic distribution network with balancing requirements. Transp. Res. Record J. Transp. Res. Board 1894, 188–197 (2004)CrossRefGoogle Scholar
  44. 44.
    Aryanezhad, M.B., Roghanian, E.A.: Bilevel linear multi-objective decision making model with interval coefficients for supply chain coordination. Int. J. Eng. Sci. 19(1–2), 67–74 (2008)Google Scholar
  45. 45.
    Jianhua, Y.: Analysis on bi-level programming model in supply chain distribution problem. In: 2012 Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 94–97. IEEE (2012)Google Scholar
  46. 46.
    Yang, J., Hao, Z.: The study on supply chain distribution optimization based on bi-level programming model. In: 2009 International Conference on Information Management, Innovation Management and Industrial Engineering, Vol. 3, pp. 7–10. IEEE (2009)Google Scholar
  47. 47.
    Sun, H.J., Gao, Z.Y.: An optimization model for two-echelon distribution network design in supply chain based on bi-level programming. J. Ind. Eng. Eng. Manag. 1, 017 (2004)Google Scholar
  48. 48.
    Zhigang, Z., Xinyi, G.: Bi-level programming method for distribution network model in supply chain. Univ. Shanghai Sci. Technol. 28, 300–302 (2006)Google Scholar
  49. 49.
    Liu, S.T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661–674 (2004)CrossRefGoogle Scholar
  50. 50.
    Chakraborty, D., Jana, D.K., Roy, T.K.: Arithmetic operations on generalized intuitionistic fuzzy number and its applications to transportation problem. Opsearch 52(3), 431–471 (2015)CrossRefGoogle Scholar
  51. 51.
    Nishad, A.K., Singh, S.R.: Goal programming for solving fractional programming problem in fuzzy environment. Appl. Math. 6(14), 2360 (2015)CrossRefGoogle Scholar
  52. 52.
    Kuwano, H.: On the fuzzy multi-objective linear programming problem: goal programming approach. Fuzzy Sets Syst. 82(1), 57–64 (1996)CrossRefGoogle Scholar
  53. 53.
    Ebrahimnejad, A.: Fuzzy linear programming approach for solving transportation problems with interval-valued trapezoidal fuzzy numbers. Sādhanā 41(3), 299–316 (2016)Google Scholar
  54. 54.
    Liu, S.T.: Fractional transportation problem with fuzzy parameters. Soft. Comput. 20(9), 3629–3636 (2016)CrossRefGoogle Scholar
  55. 55.
    Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math Appl. 7(3), 413–419 (2009)CrossRefGoogle Scholar

Copyright information

© Operational Research Society of India 2018

Authors and Affiliations

  1. 1.Department of Statistics and Operations ResearchAligarh Muslim UniversityAligarhIndia

Personalised recommendations