Advertisement

OPSEARCH

pp 1–17 | Cite as

Solution approach to multi-objective linear fractional programming problem using parametric functions

  • Suvasis NayakEmail author
  • Akshay Kumar Ojha
Theoretical Article
  • 13 Downloads

Abstract

In this paper, an iterative technique based on the use of parametric functions is proposed to obtain the best preferred optimal solution of a multi-objective linear fractional programming problem. The decision maker ascertains own desired tolerance values for the objectives as termination constants and imposes them on each iteratively computed objective functions in terms of termination conditions. Each fractional objective is transformed into non-fractional parametric function using certain initial values of parameters. The parametric values are iteratively computed and \(\epsilon \)-constraint method is used to obtain the pareto (weakly) optimal solutions in each step. The computations get terminated when all the termination conditions are satisfied at a pareto optimal solution of an iterative step. A numerical example is discussed at the end to illustrate the proposed method and fuzzy max–min operator method is applied to validate the obtained results.

Keywords

Multi-objective LFPP Pareto optimal solution \(\epsilon \)-Constraint method Parametric function Fuzzy programming 

Notes

References

  1. 1.
    Almogy, Y., Levin, O.: A class of fractional programming problems. Oper. Res. 19(1), 57–67 (1971)CrossRefGoogle Scholar
  2. 2.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B-141 (1970)CrossRefGoogle Scholar
  3. 3.
    Bitran, G.R., Novaes, A.G.: Linear programming with a fractional objective function. Oper. Res. 21(1), 22–29 (1973)CrossRefGoogle Scholar
  4. 4.
    Borza, M., Rambely, A.S., Saraj, M.: Parametric approach for linear fractional programming with interval coefficients in the objective function. In: Proceedings of the 20th National Symposium on Mathematical Sciences: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation, vol. 1522, pp. 643–647. AIP Publishing (2013)Google Scholar
  5. 5.
    Chakraborty, M., Gupta, S.: Fuzzy mathematical programming for multi objective linear fractional programming problem. Fuzzy Sets Syst. 125(3), 335–342 (2002)CrossRefGoogle Scholar
  6. 6.
    Chang, C.T.: A goal programming approach for fuzzy multiobjective fractional programming problems. Int. J. Syst. Sci. 40(8), 867–874 (2009)CrossRefGoogle Scholar
  7. 7.
    Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Naval Res. Logist. 9(3–4), 181–186 (1962)CrossRefGoogle Scholar
  8. 8.
    Chinnadurai, V., Muthukumar, S.: Solving the linear fractional programming problem in a fuzzy environment: numerical approach. Appl. Math. Model. 40(11–12), 6148–6164 (2016)CrossRefGoogle Scholar
  9. 9.
    Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies. Springer, Berlin (2003)Google Scholar
  10. 10.
    Costa, J.P.: Computing non-dominated solutions in MOLFP. Eur. J. Oper. Res. 181(3), 1464–1475 (2007)CrossRefGoogle Scholar
  11. 11.
    Dangwal, R., Sharma, M.K., Singh, P.: Taylor series solution of multiobjective linear fractional programming problem by vague set. Int. J. Fuzzy Math. Syst. 2(3), 245–253 (2012)Google Scholar
  12. 12.
    Das, S.K., Edalatpanah, S.A., Mandal, T.: A proposed model for solving fuzzy linear fractional programming problem: numerical point of view. J. Comput. Sci. 25, 367–375 (2018)CrossRefGoogle Scholar
  13. 13.
    Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)CrossRefGoogle Scholar
  14. 14.
    Ehrgott, M.: Multicriteria Optimization, vol. 2. Springer, Berlin (2005)Google Scholar
  15. 15.
    Liu, S.T.: Geometric programming with fuzzy parameters in engineering optimization. Int. J. Approx. Reason. 46(3), 484–498 (2007)CrossRefGoogle Scholar
  16. 16.
    Miettinen, K.M.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Berlin (1999)Google Scholar
  17. 17.
    Nayak, S., Ojha, A.: Generating pareto optimal solutions of multi-objective lfpp with interval coefficients using \(\epsilon \)-constraint method. Math. Model. Anal. 20(3), 329–345 (2015)CrossRefGoogle Scholar
  18. 18.
    Ojha, A.K., Biswal, K.K.: Multi-objective geometric programming problem with-constraint method. Appl. Math. Model. 38(2), 747–758 (2014)CrossRefGoogle Scholar
  19. 19.
    Osman, M.S., Emam, O.E., Elsayed, M.A.: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters. Beni-Suef Univ. J. Basic Appl. Sci. 7(1), 139–149 (2018)CrossRefGoogle Scholar
  20. 20.
    Pal, B.B., Sen, S.: A goal programming procedure for solving interval valued multiobjective fractional programming problems. In: 16th International Conference on Advanced Computing and Communications, 2008. ADCOM 2008, pp. 297–302. IEEE (2008)Google Scholar
  21. 21.
    Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods and Applications. Springer, Berlin (1997)CrossRefGoogle Scholar
  22. 22.
    Tantawy, S.F.: A new procedure for solving linear fractional programming problems. Math. Comput. Model. 48(5), 969–973 (2008)CrossRefGoogle Scholar
  23. 23.
    Toksari, M.D.: Taylor series approach to fuzzy multiobjective linear fractional programming. Inf. Sci. 178(4), 1189–1204 (2008)CrossRefGoogle Scholar
  24. 24.
    Valipour, E., Yaghoobi, M.A., Mashinchi, M.: An iterative approach to solve multiobjective linear fractional programming problems. Appl. Math. Model. 38(1), 38–49 (2014)CrossRefGoogle Scholar
  25. 25.
    Wolf, H.: Solving special nonlinear fractional programming problems via parametric linear programming. Eur. J. Oper. Res. 23(3), 396–400 (1986)CrossRefGoogle Scholar
  26. 26.
    Zhong, Z., You, F.: Parametric solution algorithms for large-scale mixed-integer fractional programming problems and applications in process systems engineering. Comput. Aided Chem. Eng. 33, 259–264 (2014)CrossRefGoogle Scholar
  27. 27.
    Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1(1), 45–55 (1978)CrossRefGoogle Scholar

Copyright information

© Operational Research Society of India 2019

Authors and Affiliations

  1. 1.School of Basic SciencesIndian Institute of Technology BhubaneswarKhurdaIndia

Personalised recommendations