OPSEARCH

, Volume 50, Issue 4, pp 582–603

Computational analysis of bulk service queue with Markovian arrival process: MAP/R(a, b)/1 queue

Theoretical Article

Abstract

In recent years, queueing models with Markovian arrival process have attracted interest among researchers due to their applications in telecommunications. Such models are generally dealt with matrix-analytic method which appears to be powerful analytically despite the fact that it has numerical difficulties. However, analyzing such queues with the method of roots is always a neglected part since it was assumed that such models are difficult to analyze using roots. In this paper, we consider a bulk service queue with Markovian arrival process and analyze it using the method of roots and present a simple closed-form analysis for evaluating queue-length distribution at a post-departure epoch in terms of roots of the characteristic equation associated with the MAP/R \(^{(a,b)}\)/1 queue, where R represents the class of distributions whose Laplace–Stieltjes transforms are rational functions. We also obtain queue-length distributions at arbitrary epochs. Numerical aspects have been tested for a variety of arrival and service-time (including matrix-exponential (ME)) distributions and a sample of numerical outputs is presented. We hope that the proposed method should be useful for practitioners of queueing theory.

Keywords

Batch service General bulk service rule Markovian arrival process (MAP) Matrix-exponential (ME) Phase-type (PH) Queueing Queue-length Rational Laplace–Stieltjes transform Roots 

References

  1. 1.
    Abate, J., Whitt, W.: A unified framework for numerically inverting Laplace transforms. INFORMS J. Comput. 18(4), 408–421 (2006)CrossRefGoogle Scholar
  2. 2.
    Abolnikov, L., Dukhovny, A.: Markov chains with transition delta-matrix: ergodicity conditions, invariant probability measures and applications. J. Appl. Math. Stoch. Anal. 4(4), 333–355 (1991)CrossRefGoogle Scholar
  3. 3.
    Akar, N.: Solving the ME/ME/1 queue with state-space methods and the matrix sign function. Perform. Eval. 63(2), 131–145 (2006)CrossRefGoogle Scholar
  4. 4.
    Asmussen, S., Bladt, M.: Renewal theory and queueing algorithms for matrix-exponential distributions. In: Chakravarthy, S.R., Alfa, A.S. (eds.) Matrix-analytic Methods in Stochastic Models, pp. 313–341. Marcel Dekker, New York (1997)Google Scholar
  5. 5.
    Asmussen, S., O’Cinneide, C.A.: Matrix-exponential distributions. In: Kotz, S., Read, C.B., Banks, D.L. (eds.) Encyclopedia of Statistical Science, pp. 435–440. Wiley, New York (1998)Google Scholar
  6. 6.
    Avram, F., Gómez-Corral, A.: On bulk-service MAP/PH(L, N)/1/N G-Queues with repeated attempts. Ann. Oper. Res. 141(1), 109–137 (2006)CrossRefGoogle Scholar
  7. 7.
    Banerjee, A., Gupta, U.C.: Reducing congestion in bulk-service finite-buffer queueing system using batch-size-dependent service. Perform. Eval. 69(1), 53–70 (2012)CrossRefGoogle Scholar
  8. 8.
    Banik, A.D.: Queueing analysis and optimal control of BMAP/G(a, b)/1/N and BMAP/MSP(a, b)/1/N systems. Comput. Ind. Eng. 57(3), 748–761 (2009)CrossRefGoogle Scholar
  9. 9.
    Bar-Lev, S.K., Parlar, M., Perry, D., Stadje, W., Van der Duyn Schouten, F.A.: Applications of bulk queues to group testing models with incomplete identification. Eur. J. Oper. Res. 183(1), 226–237 (2007)CrossRefGoogle Scholar
  10. 10.
    Bean, N., Fackrell, M., Taylor, P.: Characterization of matrix-exponential distributions. Stoch. Model. 24(3), 339–363 (2008)CrossRefGoogle Scholar
  11. 11.
    Botta, R.F., Harris, C.M., Marchal, W.G.: Characterizations of generalized hyperexponential distribution functions. Stoch. Model. 3(1), 115–148 (1987)CrossRefGoogle Scholar
  12. 12.
    Chakravarthy, S.R.: Analysis of a finite MAP/G/1 queue with group services. Queueing Syst. 13(4), 385–407 (1993)CrossRefGoogle Scholar
  13. 13.
    Chakravarthy, S.R., Dudin, A.N.: A multi-server retrial queue with BMAP arrivals and group services. Queueing Syst. 42(1), 5–31 (2002)CrossRefGoogle Scholar
  14. 14.
    Chaudhry, M.L., Gai, J.: A simple and extended computational analysis of \({M}/{G}_{j}^{(a,b)}/1\) and \({M}/{G}_{j}^{(a,b)}/1/{(B+b)}\) queues using roots. INFOR 50(2), 72–79 (2012)Google Scholar
  15. 15.
    Chaudhry, M.L., Gupta, U.C.: Modelling and analysis of M/G(a, b)/1/N queue–a simple alternative approach. Queueing Syst. 31(1), 95–100 (1999)CrossRefGoogle Scholar
  16. 16.
    Chaudhry, M.L., Harris, C.M., Marchal, W.G.: Robustness of rootfinding in single-server queueing models. INFORMS J. Comput. 2(3), 273–286 (1990)CrossRefGoogle Scholar
  17. 17.
    Chaudhry, M.L., Madill, B.R., Brière, G.: Computational analysis of steady-state probabilities of M/G(a, b)/1 and related nonbulk queues. Queueing Syst. 2(2), 93–114 (1987)CrossRefGoogle Scholar
  18. 18.
    Chaudhry, M.L., Singh, G., Gupta, U.C.: A simple and complete computational analysis of MAP/R/1 queue using roots. Methodol. Comput. Appl. Probab., 1–20 (2011). doi:10.1007/s11009-011-9266-3
  19. 19.
    Chaudhry, M.L., Templeton, J.G.C.: A first course in bulk queues. Wiley, New York, USA (1983)Google Scholar
  20. 20.
    Claeys, D.: Analysis of queueing models with batch service. Ph.D. thesis,Ghent University, Ghent, Belgium (2011)Google Scholar
  21. 21.
    Claeys, D., Laevens, K., Walraevens, J., Bruneel, H.: Complete characterisation of the customer delay in a queueing system with batch arrivals and batch service. Math. Method. Oper. Res. 72(1), 1–23 (2010b)CrossRefGoogle Scholar
  22. 22.
    Claeys, D., Walraevens, J., Laevens, K., Bruneel, H.: Delay analysis of two batch-service queueing models with batch arrivals: GeoX/Geoc/1. 4OR 8(3), 255–269 (2010a)CrossRefGoogle Scholar
  23. 23.
    Claeys, D., Walraevens, J., Laevens, K., Steyaert, B., Bruneel, H.: A batch-service queueing model with a discrete batch Markovian arrival process. In: Al-Begain, K., Fiems, D., Knottenbelt, W. (eds.) Analytical and Stochastic Modeling Techniques and Applications, Lecture Notes in Computer Science, vol. 6148, pp. 1–13. Springer, Berlin (2010c)Google Scholar
  24. 24.
    Gail, H.R., Hantler, S.L., Sidi, M., Taylor, B.A.: Linear independence of root equations for M/G/1 type Markov chains. Queueing Syst. 20(3), 321–339 (1995)CrossRefGoogle Scholar
  25. 25.
    Gupta, U.C.: Numerical results for MAP/R(a, b)/1 queue using roots. http://ucgupta.hpage.com/get_file.php?id=1713497&;vnr=937799. Last Accessed July 16, 2012 (2012b)
  26. 26.
    Gupta, U.C., Laxmi, P.V.: Analysis of the MAP/G(a, b)/1/N queue. Queueing Syst. 38(2), 109–124 (2001)CrossRefGoogle Scholar
  27. 27.
    Hamid, A., Guérin: Analysis of a class of buffer storage systems with markov-correlated input and bulk service. In: Pujoll, G., Puigjaner, R. (eds.) Data Communication Systems and Their Performance, IFIP, pp. 109–125 (1991)Google Scholar
  28. 28.
    He, J.F., Sohraby, K.: A new analysis framework for discrete time queueing systems with general stochastic sources. In: INFOCOM 2001. Twentieth annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE, vol. 2, pp. 1075–1084. IEEE (2001)Google Scholar
  29. 29.
    Lee, H.W., Moon, J.M., Kim, B.K., Park, J.G., Lee, S.W.: A simple eigenvalue method for low-order D-BMAP/G/1 queues. Appl. Math. Model. 29(3), 277–288 (2005)CrossRefGoogle Scholar
  30. 30.
    Lipsky, L.R., 2nd edn: Queuing theory: a linear algebraic approach. Springer Science+Business Media Inc., New York (2009)Google Scholar
  31. 31.
    Neuts, M.F.: A general class of bulk queues with poisson input. Ann. Math. Stat. 38(3), 759–770 (1967)CrossRefGoogle Scholar
  32. 32.
    Neuts, M.F.: Transform-free equations for the stationary waiting time distributions in the queue with Poisson arrivals and bulk services. Ann. Oper. Res. 8(3), 3–26 (1987)Google Scholar
  33. 33.
    Nishimura, S., Harashima, A.: Newton’s method for zero points of a matrix function and its applications to queueing models. J. Oper. Res. Soc. Jpn. 43(3), 396–416 (2000)Google Scholar
  34. 34.
    Nishimura, S., Tominaga, H., Shigeta, T.: A computational method for the boundary vector of a BMAP/G/1 queue. J. Oper. Res. 49(2), 83–97 (2006)Google Scholar
  35. 35.
    Singh, G., Chaudhry, M.L., Gupta, U.C.: Computing system-time and system-length distributions for MAP/D/1 queue using distributional Little’s law. Perform. Eval. 69(2), 102–118 (2012)CrossRefGoogle Scholar
  36. 36.
    Skelly, P., Schwartz, M., Dixit, S.: A histogram-based model for video traffic behavior in an ATM multiplexer. IEEE/ACM Trans. Netw. (TON) 1(4), 446–459 (1993)CrossRefGoogle Scholar

Copyright information

© Operational Research Society of India 2013

Authors and Affiliations

  • Gagandeep Singh
    • 1
  • U. C. Gupta
    • 1
  • M. L. Chaudhry
    • 2
  1. 1.Department of MathematicsIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada

Personalised recommendations