OPSEARCH

, Volume 49, Issue 2, pp 133–153 | Cite as

Multiobjective integer nonlinear fractional programming problem: A cutting plane approach

Theoretical Article

Abstract

The present paper discusses a multiobjective integer nonlinear fractional programming problem based on cutting plane technique. The methodology discussed is such that it finds all the nondominated t-tuples of the multiobjective nonlinear fractional programming problem by exploiting the quasimonotone character of the nonlinear fractional functions involved. The cut discussed in the present paper scans and truncates a portion of the feasible region in such way that once truncated, it does not reappear, thereby leading to the convergence of the proposed algorithm in finite number of steps. Further, the quasimonotone character of the objective functions involved enables us to find all the nondominated t-tuples at extreme points of the truncated feasible region obtained after repeated applications of the cut developed in the paper.

Keywords

Fractional programming Multiobjective programming Integer programming Extreme points 

References

  1. 1.
    Alves, M.J., Clímaco, J.: A review of interactive methods for multiobjective integer and mixed integer programming. Eur. J. Oper. Res. 180, 99–115 (2007)CrossRefGoogle Scholar
  2. 2.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (1991)Google Scholar
  3. 3.
    Caballero, R., Hernández, M.: The controlled estimation method in the multiobjective linear fractional problem. Comput. Oper. Res. 31, 1821–1832 (2004)CrossRefGoogle Scholar
  4. 4.
    Charles, V., Udhayakumar, A., Uthariaraj V.R.: An approach to find redundant objective function(s) and redundant constraint(s) in multiobjective nonlinear fractional programming problems. Eur. J. Oper. Res. 201, 390–398 (2010)CrossRefGoogle Scholar
  5. 5.
    Dahiya, K., Verma, V.: Valid cuts in integer programming with bounded variables. Proc. APORS 1, 19–28 (2003)Google Scholar
  6. 6.
    Dhaenens, C., Lemesre, J., Talbi, E.G.: K-PPM: a new exact method to solve multi-objective combinatorial optimization problems. Eur. J. Oper. Res. 200(1), 45–53 (2010)CrossRefGoogle Scholar
  7. 7.
    Ecker, J.G., Kouda, I.A.: Finding all extreme points for multiobjective linear programs. Math. Prog. 14, 249–261 (1978)CrossRefGoogle Scholar
  8. 8.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum 22(4), 425–460 (2000)Google Scholar
  9. 9.
    Evans, J.P., Steuer, R.E.: A revised simplex method for linear multiple objective programs. Math. Program. 5, 54–72 (1973)CrossRefGoogle Scholar
  10. 10.
    Geoffrion, A.M.: Solving bicriterion mathematical programs. Oper. Res. 15(1), 39–54 (1967)CrossRefGoogle Scholar
  11. 11.
    Gupta, R., Puri, M.C.: Bicriteria integer nonlinear fractional programming problem. Asia-Pac. J. Oper. Res. 15, 1–16 (1998)Google Scholar
  12. 12.
    Kornbluth, J.S.H., Steuer, R.E.: Multiple objective linear fractional programming. Manage. Sci. 27(9), 1024–1039 (1981)CrossRefGoogle Scholar
  13. 13.
    Jorge, J.M.: An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195(1), 98–103, (2009)CrossRefGoogle Scholar
  14. 14.
    Metev, B., Gueorguieva, D.: A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems. Eur. J. Oper. Res. 126, 386–390 (2000)CrossRefGoogle Scholar
  15. 15.
    Özlen, M., Azizoǧlu, M.: Multi-objective integer programming: a general approach for generating all non-dominated solutions. Eur. J. Oper. Res. 199(1), 25–35 (2009)CrossRefGoogle Scholar
  16. 16.
    Przybylski, A., Gandibleux, X., Ehrgott, M.: A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives. Discrete Optim. 7(3), 149–165 (2010)CrossRefGoogle Scholar
  17. 17.
    Saad, O.M., Biltagy, M.Sh., Farag, T.B.: An algorithm for multiobjective integer nonlinear fractional programming problem under fuzziness. Gen Math. Notes 2, 1–17 (2011)Google Scholar
  18. 18.
    Schaible, S.: Fractional programming: applications and algorithms. Eur. J. Oper. Res. 7, 111–120 (1981)CrossRefGoogle Scholar
  19. 19.
    Schaible S.: Fractional programming. In: Horst, R., Paradalos, P.M. (eds.) Handbook of Global Optimization, pp. 495–608. Kluwer Academic publishers, Dordrecht (1995)Google Scholar
  20. 20.
    Sniedovich M.: Fractional programming revisited. Eur. J. Oper. Res. 33, 334–341 (1988)CrossRefGoogle Scholar
  21. 21.
    Steuer, R.E.: Multiple Criteria Optimization - Theory, Computations and Application. Wiley, New York (1986)Google Scholar
  22. 22.
    Sylva, J., Crema, A.: A method finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158, 46–55 (2004)CrossRefGoogle Scholar
  23. 23.
    Zionts, S.: A survey of multiple criteria integer programming methods. Ann. Discrete Math. 1, 551–562 (1979)CrossRefGoogle Scholar

Copyright information

© Operational Research Society of India 2012

Authors and Affiliations

  1. 1.School of Mathematics and Computer Applications (SMCA)Thapar UniversityPunjabIndia

Personalised recommendations