Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of bias current in proposed two-stage injection-locked optical OFDM MMF system


In this paper, a two-stage injection locking is proposed in the optical orthogonal frequency division multiplexing (OFDM)-based multimode fiber (MMF) communication system. The primary objective of the proposed technique is to combine the high power output with a low-intensity noise in order to enhance the transmission performance of the system with an extended reach (~ 5000 m). Here, the two-stage injection locking is being reported for the first time in case of 20-Gbps OFDM data signals over MMF links. The technique comprises vertical-cavity surface-emitting lasers under ultra-high injection-locking conditions. A certain optimum threshold point (150 mA) is derived for appropriate biasing of both master and slave lasers under locking conditions. The results demonstrate that the proposed two-stage injection-locked system is significantly effective in achieving better transmission performance (in terms of low bit error rate below 1 × 10−40 and high Q factor > 19 dB), compared to the other systems, i.e., system without injection locking and with one-stage injection locking.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



Bit error rate


Injection-locked optical OFDM


Multimode fiber


Negative dispersion fiber


Optical fiber communication


Orthogonal frequency division multiplexing


Passive optical network


Radio frequency


Single-mode fiber


Vertical-cavity surface-emitting lasers


Wavelength division multiplexing


  1. 1.

    X. Yi, S. Hu, H. Zhou, C. Tang, B. Xu, J. Zhang, K. Qiu, Phase noise effects on phase-modulated coherent optical OFDM. IEEE Photon. J. 8, 1–8 (2016)

  2. 2.

    R.B. Nunes, R.D.O. Helder, M.E. Segatto, J.A. Silva, Experimental validation of a constant-envelope OFDM system for optical direct-detection. Opt. Fiber Technol. 20, 303–307 (2014)

  3. 3.

    E. Haglund, P. Westbergh, J.S. Gustavsson, E.P. Haglund, A. Larsson, M. Geen, A. Joel, 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron. Lett. 51, 1096–1098 (2015)

  4. 4.

    C.H. Cox, E.I. Ackerman, G.E. Betts, J.L. Prince, Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006)

  5. 5.

    P. Westbergh, J.S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, Impact of photon lifetime on high-speed VCSEL performance. IEEE J. Sel. Topics Quantum Electron. 17, 1603–1613 (2011)

  6. 6.

    C.W. Chow, L. Xu, C.H. Yeh, H.K. Tsang, W. Hofmann, M.C. Amann, 40-Gb/s upstream transmitters using directly modulated 1.55- µm VCSEL array for high-split-ratio PONs. IEEE Photon. Technol. Lett. 22, 347–349 (2010)

  7. 7.

    W. Hofmann, N.H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, M.C. Amann, High speed (> 11 GHz) modulation of BCB-passivated 155 lm InGaAlAs-InP VCSELs. Electron. Lett. 42, 976–977 (2006)

  8. 8.

    K.Y. Lau, A. Yariv, Intermodulation distortion in a directly modulated semiconductor injection laser. Appl. Phys. Lett. 45, 1034–1036 (1984)

  9. 9.

    P. Guo, W. Yang, D. Parekh, A. Xu, Z. Chen, C.J. Chang-Hasnain, An ellipse model for cavity mode behavior of optically injection-locked VCSELs. Opt. Express 20, 6980–6988 (2012)

  10. 10.

    D. Parekh, X. Zhao, W. Hofmann, M.C. Amann, L.A. Zenteno, C.J. Chang-Hasnain, Greatly enhanced modulation response of injection-locked multimode VCSELs. Opt. Express 16, 21582–21586 (2008)

  11. 11.

    C.L. Ying, H.H. Lu, C.Y. Li, C.Y. Lin, C.Y. Lin, P.C. Peng, A 20-km/60-Gb/s two-way PON based on directly modulated two-stage injection-locked 1.55 µm VCSEL transmitters and negative dispersion fibers. IEEE Photon. J. 7, 7200409 (2015)

  12. 12.

    Y. Satuby, M. Orenstein, Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers. IEEE J. Quantum Electron. 35, 944–954 (1999)

  13. 13.

    A. Boletti, P. Boffi, P. Martelli, M. Ferrario, M. Martinelli, Performance analysis of communication links based on VCSEL and silicon photonics technology for high-capacity data-intensive scenario. Opt. Express 23, 1806–1815 (2015)

  14. 14.

    L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

  15. 15.

    R. Safaisini, J.R. Joseph, D. Louderback, X. Jin, A.N. Al-Omari, K.L. Lear, Temperature dependence of 980-nm oxide-confined VCSEL dynamics. IEEE Photon. Technol. Lett. 20, 1273–1275 (2008)

  16. 16.

    P. Westbergh, J.S. Gustavsson, Å. Haglund, M. Skold, A. Joel, A. Larsson, High-speed, low-current-density 850 nm VCSELs. IEEE J. Sel. Topics Quantum Electron. 15, 694–703 (2009)

  17. 17.

    C.H. Chang, L. Chrostowski, C.J. Chang-Hasnain, Injection locking of VCSELs. IEEE J. Sel. Topics Quantum Electron. 9, 1386–1393 (2003)

  18. 18.

    L. Chrostowski, X. Zhao, C.J. Chang-Hasnain, Microwave performance of optically injection-locked VCSELs. IEEE Trans. Microw. Theory Tech. 54, 788–796 (2006)

  19. 19.

    M. Nehra, D. Kedia, Design of optical I/Q modulator using dual-drive mach-zehnder modulators in coherent optical-OFDM system. J. Opt. Commun. 39, 155–159 (2016)

  20. 20.

    S. Paul, C. Gierl, J. Cesar, Q.T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, F. Küppers, 10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL. IEEE J. Sel. Topics Quantum Electron. 21, 436–443 (2015)

Download references


Monika Nehra is thankful to UGC, India, for providing financial assistance in the form of JRF (award No. 3608 dated 29-02-2016).

Author information

Correspondence to Deepak Kedia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nehra, M., Kedia, D. Effect of bias current in proposed two-stage injection-locked optical OFDM MMF system. J Opt (2020).

Download citation


  • Injection-locked optical OFDM (ILO-OFDM)
  • Multimode fiber (MMF)
  • Orthogonal frequency division multiplexing (OFDM)
  • Vertical-cavity surface-emitting lasers (VCSELs)