Journal of Optics

, Volume 48, Issue 4, pp 606–615 | Cite as

Performance analysis of optical distribution network for NG-PON

  • Sanmukh KaurEmail author
  • Raj Kamal Kapur
Research Article


Optical fiber-based networks can meet the increasing demand for faster and higher bandwidth broadband connections to user premises. The gigabit-class passive optical networks are standardized and deployed nowadays. With ever increasing demand for higher speeds, next-generation PONs (NG-PONs) deployment is quite inevitable. The NG-PON has to evolve over the existing optical distribution network (ODN) as it accounts for the major cost of the PON. This paper analyzes the performance of the existing ODN for deployment of an NG-PON. The performance characteristics of ODNs of existing PON architecture have been analyzed considering different types of fibers, split ratios and optical wavelengths for upgradation to NG-PON.





  1. 1.
    R. Yadav, Passive-optical-network- (PON-) based converged access network [invited]. J. Opt. Commun. Netw. 4(11), B124–B130 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Shinohara, Broadband access in Japan: rapidly growing FTTH market. IEEE Commun. Mag. 43, 72–78 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Kakati, S. Kaur, Performance evaluation of 16QAM optical network for WAN communication. Int. J. Adv. Comput. Eng. Netw. 5(7), 45–48 (2017)Google Scholar
  4. 4.
    S. Hernández, J. Altabas, J. Lazaro (2018). Passive optical networks: introduction.
  5. 5.
    T. Tsuboi, T. Taniguchi, T. Yokotani, Technical features and approaches on optical access networks for various applications. IEICE Trans. Commun. 100, 1606–1613 (2017)CrossRefGoogle Scholar
  6. 6.
    M.H. Ali, M.H. Ali, H-DBA for gigabit passive optical network with performance analysis, in 2017 International Conference on Computer, Electrical & Communication Engineering (ICCECE), Kolkata, 2017, pp. 1–6.
  7. 7.
    M. Elmagzoub, A.B. Mohammad, R.Q. Shaddad, S.A. Al-Gailani, New RoF-PON architecture using polarization multiplexed wireless MIMO signals for NG-PON. Opt. Commun. 344, 55–64 (2015)CrossRefADSGoogle Scholar
  8. 8.
    H.S. Abbas, M.A. Gregory, The next generation of passive optical networks: a review. J. Netw. Comput. Appl. 67, 53–74 (2016)CrossRefGoogle Scholar
  9. 9.
    F.J. Effenberger, Industrial trends and roadmap of access. J. Lightw. Technol. 35, 1142–1146 (2017)CrossRefADSGoogle Scholar
  10. 10.
    F. Obite, E.T. Jaja, G. Ijeomah, K.I. Jahun, The evolution of ethernet passive optical network (EPON) and future trends. Optik 167, 103–120 (2018)CrossRefADSGoogle Scholar
  11. 11.
    D.V. Veen, V.E. Houtsma, Proposals for cost-effectively upgrading passive optical networks to a 25G line rate. J. Lightwave Technol. 35, 1180–1187 (2017)CrossRefADSGoogle Scholar
  12. 12.
    E.F. Aguas Martinez, G.A. Puerto Leguizamón, C.A. Suárez Fajardo, Towards a new generation of passive optical networks. Ingeniería 21(1), 49–62 (2016)Google Scholar
  13. 13.
    H. Kim et al., An electronic dispersion compensator (EDC) with an analog eye-opening monitor (EOM) for 1.25-Gb/s gigabit passive optical network (GPON) upstream links. IEEE Trans. Microwave Theory Tech 55(12), 2942–2950 (2007)CrossRefADSGoogle Scholar
  14. 14.
    H.A. Bakarman, S. Shaari, M. Ismail, Simulation of 1.25 Gb/s downstream transmission performance of GPON-FTTx, in International Conference On Photonics 2010, Langkawi, 2010, pp. 1–5Google Scholar
  15. 15.
    K. Kanonakis, I. Tomkos, Offset-based scheduling with flexible intervals for evolving GPON networks. J. Lightwave Technol. 27(15), 3259–3268 (2009)CrossRefADSGoogle Scholar
  16. 16.
    B. Batagelj, V. Eržen, V. Bagan, Y. Ignatov, Optical access network migration from GPON to XG-PON, in ACCESS 2012: The Third International Conference on Access Networks 2012, pp. 62–67Google Scholar
  17. 17.
    X. Yu, T.B. Gibbon, R. Rodes, T. Pham, I.T. Monroy, System wide implementation of photonically generated impulse radio ultra-wideband for gigabit fiber-wireless access. J. Lightwave Technol. 31(2), 264–275 (2013)CrossRefADSGoogle Scholar
  18. 18.
    S. Lee, J. Kim, Q. Le, M. Lee, H. Kim, C. Park, A single-chip 2.5-Gb/s burst-mode optical receiver with wide dynamic range. IEEE Photonics Technol. Lett. 23(2), 85–87 (2011)CrossRefADSGoogle Scholar
  19. 19.
    P. Brandao Harboe, J. Rodolfo Souza, Passive Optical Network: characteristics, Deployment, and Perspectives. IEEE Latin Am. Trans. 11(4), 995–1000 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Kumar, Improved performance analysis of Gigabit passive optical networks. Opt. Int. J.Light Electron Opt. 125(7), 1837–1840 (2014)CrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Amity School of Engineering and TechnologyAmity UniversityNoidaIndia

Personalised recommendations