Journal of Optics

, Volume 48, Issue 4, pp 594–605 | Cite as

Bright and dark solitons in (n + 1)-dimensions with spatio-temporal dispersion

  • Asad ZubairEmail author
  • Nauman Raza
Research Article


This work is devoted to scrutinize new optical soliton solutions to the spatially temporal (n + 1)-dimensional nonlinear Schrödinger’s equation. The initial ansatz supposed in the form of Jacobi elliptic functions to obtain dark and bright optical solitons in the presence of different non-Kerr media. Kerr law, power law, parabolic law and dual-power law have been utilized as nonlinear medium. The fetched results are new and useful for the propagation of light pulses in optical fibers. For the existence of these solitons constraint conditions are also listed.


Optical solitons (n + 1)-Dimensional NLSE Spatio-temporal dispersion (STD) Jacobi elliptic functions Constraints 



  1. 1.
    P.D. Green, A. Biswas, Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 15, 3865–3873 (2010)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    A. Biswas, 1-Soliton solution of the (1 + 2)-dimensions nonlinear Schrödingers equation in dual-power law media. Phys. Lett. A 372, 5941–5943 (2008)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    A. Biswas, Dark solitons for a generalized nonlinear Schrödingers equation with parabolic and dual-power law nonlinearities. Math. Methods Appl. Sci. 3, 958–962 (2011)zbMATHGoogle Scholar
  4. 4.
    T.S. Raju, P.K. Panigrahi, K. Porsezian, Nonlinear compression of solitary waves in asymmetric twin-core fibers. Phys. Rev. E 71, 026608 (2005)CrossRefADSGoogle Scholar
  5. 5.
    A.A. Alshaery, E.M. Hilal, M.A. Banaja, S.A. Alkhateeb, L. Moraru, A. Biswas, Optical solitons in multiple-core couplers. J. Optoelectron. Adv. Mater. 16, 750–758 (2014)Google Scholar
  6. 6.
    A. Biswas, D.A. Lott, B. Sutton, K.R. Khan, M.F. Mahmood, Optical gaussons in nonlinear directional couplers. J. Electromagn. Waves Appl. 27, 1976–1985 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Younis, S.T.R. Rizvi, Dispersive dark optical soliton in (2 + 1)-dimensions by \((G^{\prime }/G)\)-expansion with dual-power law nonlinearity. Optik 126, 5812–5814 (2015)CrossRefADSGoogle Scholar
  8. 8.
    M. Younis, S.T.R. Rizvi, Optical solitons for ultrashort pulses in nano fibers. J. Nanoelectron. Optoelectron. 10, 179–182 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Younis, S.T.R. Rizvi, Q. Zhou, A. Biswas, M. Belic, Optical solitons in dual-core fibers with \(G^{\prime }/G\)-expansion scheme. J. Optoelectron. Adv. Mater. 17, 505–510 (2015)Google Scholar
  10. 10.
    M. Li, T. Xu, L. Wang, Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 80, 1451–1461 (2015)CrossRefGoogle Scholar
  11. 11.
    Q. Zhou, Analytical solutions and modulational instability analysis to the perturbed nonlinear Schrödinger equation. J. Mod. Opt. 61, 500–503 (2014)CrossRefADSGoogle Scholar
  12. 12.
    C.M. Khalique, A. Biswas, Optical solitons with dual-power law nonlinearity using lie symmetries. Mod. Phys. Lett. B 24, 1833–1838 (2010)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    R. Guo, H.Q. Hao, L.L. Zhang, Optical solitons with dual-power law nonlinearity using lie symmetries. Mod. Phys. Lett. B 27, 1350130–1350140 (2013)CrossRefADSGoogle Scholar
  14. 14.
    M. Savescu, K.R. Khan, R. Kohl, L. Moraru, A. Yildirim, A. Biswas, Optical soliton perturbation with improved nonlinear Schrödingers equation in nanofibers. J. Nanoelectron. Optoelectron. 8, 208–220 (2013)CrossRefGoogle Scholar
  15. 15.
    A.H. Arnous, M. Mirzazadeh, Q. Zhou, M.F. Mahmood, A. Biswas, M. Belic, Optical solitons with resonant nonlinear Schrdingers equation using \((G^{\prime }/G)\)-expansion scheme. Optoelectron. Adv. Mater. 9, 1214–1220 (2015)Google Scholar
  16. 16.
    A.H. Arnous, M. Mirzazadeh, S. Moshokoa, S. Medhekar, Q. Zhou, M.F. Mahmood, A. Biswas, M. Belic, Solitons in optical metamaterials with trialsolution approach and Backlund transformation of Riccati equation. J. Comput. Theor. Nanosci. 12, 5940–5948 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Mirzazadeh, M. Eslami, A.H. Arnous, Dark optical solitons of Biswas–Milovic equation with dual-power law nonlinearity. Eur. Phys. J. Plus.
  18. 18.
    M. Mirzazadeh, A.H. Arnous, M.F. Mahmood, E. Zerrad, A. Biswas, Soliton solutions to resonant nonlinear Schrödingers equation withtime-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)CrossRefGoogle Scholar
  19. 19.
    R.S. Johnson, Anon-linear equation incorporating damping and dispersion. J. Fluid Mech. 42, 49–60 (1970)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self similar protein dynamics. Biophys. J. 68, 46–53 (1995)CrossRefADSGoogle Scholar
  21. 21.
    M. Younis, S. Ali, Solitary wave and shock wave solitons to the transmission line model for nano-ionic currents along microtubules. Appl. Math. Comput. 246, 460–463 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    J.H. He, Some applications of nonlinear fractional differential equations and their applications. Bull. Sci. Technol. 15, 86–90 (1999)Google Scholar
  23. 23.
    M. Abdullah, A.R. Butt, N. Raza, A.S. Alshomrani, A.K. Alzahrani, Analysis of blood flow with nanoparticles induced by uniform magnetic field through a circular cylinder with fractional Caputo derivatives. J. Magn. Magn. Mater. 446, 28–36 (2018)CrossRefADSGoogle Scholar
  24. 24.
    M. Abdullah, A.R. Butt, N. Raza, E.U. Haque, Semi-analytical technique for the solution of fractional Maxwell fluid. Can. J. Phys. 94, 472–478 (2017)CrossRefADSGoogle Scholar
  25. 25.
    C. Yang, A.M. Wazwaz, Q. Zhou, W. Liu, Transformation of soliton states for a (2 + 1) dimensional fourth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain. Laser Phy. 29, 35401 (2019)CrossRefGoogle Scholar
  26. 26.
    W. Liu, Y. Zhang, H. Triki, M. Mirzazadeh, M. Ekici, Q. Zhou, A. Biswas, M. Belic, Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn. 95, 557–563 (2019)CrossRefGoogle Scholar
  27. 27.
    C. Yang, W. Liu, Q. Zhou, D. Mihalache, B.A. Malomed, One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrodinger equation. Nonlinear Dyn. 95, 369–380 (2019)CrossRefGoogle Scholar
  28. 28.
    X. Liu, H. Triki, Q. Zhou, M. Mirzazadeh, W. Liu, A. Biswas, M. Belic, Generation and control of multiple solitons under the influence of parameters. Nonlinear Dyn. 95, 143–150 (2019)CrossRefGoogle Scholar
  29. 29.
    W. Yu, Q. Zhou, M. Mirzazadeh, W. Liu, A. Biswas, Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. J. Adv. Res. 15, 68–76 (2019)CrossRefGoogle Scholar
  30. 30.
    A. Biswas, M.B. Hubert, M. Justin, G. Betchewe, S.Y. Doka, K.T. Crepin, M. Ekici, Q. Zhou, S.P. Moshokoa, M. Belic, Chirped dispersive bright and singular optical solitons with Schrödinger–Hirota equation. Optik 168, 192–195 (2018)CrossRefADSGoogle Scholar
  31. 31.
    A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, S.P. Moshokoa, M. Belic, Sub pico-second pulses in mono-mode optical fibers with Kaup–Newell equation by a couple of integration schemes. Optik 167, 121–128 (2018)CrossRefADSGoogle Scholar
  32. 32.
    A. Biswas, H. Rezazadeh, M. Mirzazadeh, M. Eslami, M. Ekici, Q. Zhou, S.P. Moshokoa, M. Belic, Optical soliton perturbation with Fokas–Lenells equation using three exotic and efficient integration schemes. Optik 165, 288–294 (2018)CrossRefADSGoogle Scholar
  33. 33.
    H. Guo, X. Zhang, G. Ma, X. Zhang, C. Yang, Q. Zhou, W. Liu, Analytic study on interactions of some types of solitary waves. Optik 164, 132–137 (2018)CrossRefADSGoogle Scholar
  34. 34.
    W. Yu, M. Ekici, M. Mirzazadeh, Q. Zhou, W. Liu, Periodic oscillations of dark solitons in nonlinear optics. Optik 165, 341–344 (2018)CrossRefADSGoogle Scholar
  35. 35.
    N. Raza, S. Sial, M. Kaplan, Exact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution. Optik 156, 628–634 (2018)CrossRefADSGoogle Scholar
  36. 36.
    N. Raza, M. Abdullah, A.R. Butt, Analytical soliton solutions of BiswasMilovic equation in Kerr and non-Kerr law media. Optik 157, 993–1002 (2018)CrossRefADSGoogle Scholar
  37. 37.
    N. Raza, A. Javid, Optical dark and singular solitons to the Biswas–Milovic equation in nonlinear optics with spatio-temporal dispersion. Optik 158, 1049–1057 (2018)CrossRefADSGoogle Scholar
  38. 38.
    B. Younas, M. Younis, M.O. Ahmed, S.T.R. Rizvi, Exact optical solitons in (\(n+1\))-dimensions under anti-cubic law of nonlinearity. Optik 156, 479–486 (2018)CrossRefADSGoogle Scholar
  39. 39.
    N. Raza, A. Zubair, Optical dark and singular solitons of generalized nonlinear Schrodinger’s equation with anti-cubic law of nonlinearity 65, 1950158 (2019)Google Scholar
  40. 40.
    M. Younis, Optical solitons in (\(n+1\)) dimensions with Kerr and power law nonlinearities. Mod. Phy. Lett. B 31, 1750186 (2017). (9–pages)MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    M.M.A. Qurashi, E. Ates, M. Inc, Optical solitons in multiple-core couplers with the nearest neighbors linear coupling. Optik 142, 343–353 (2017)CrossRefADSGoogle Scholar
  42. 42.
    N. Raza, A. Zubair, Bright, dark and dark-singular soliton solutions of nonlinear Schrodinger’s equation with spatio-temporal dispersion. J. Mod. Opt. 65, 1975–1982 (2018)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations