Laser Doppler velocimeter using the self-mixing effect of a fiber ring laser with ultra-narrow linewidth

  • Rong Xiang
  • Chenchen Wang
  • Liang LuEmail author
Research Article


Self-mixing laser velocimeter using a fiber ring laser with ultra-narrow linewidth is proposed and investigated in this paper. Experimentally, a saturable absorber consisting of a segment un-pumped Er3+-doped fiber (EDF) is used to squeeze the spectrum linewidth of fiber ring laser. In addition, we numerically plotted the self-mixing signal of Doppler velocity measuring system with different speeds. The experimental results show that Doppler shift is linearly proportional to the speed of rotating disk, which is in good agreement with theory analysis. Moreover, the measuring range of speed is from 23.5 to 635.8 mm/s and relative error is less than 2.5%, which indicate the fiber laser with ultra-narrow linewidth has a number of potential applications for interferometric fiber sensors and gas sensors.


Self-mixing interference Doppler shift Velocimeter Fiber ring laser 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61307098, 61741501); Foundation for Scientific Research and Technical Leaders in Anhui province (Grant No. 2017H124); Natural Science Fund of University of Anhui Province (Grant Nos. KJ2018ZD002, KJ2018A0457) and Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University.


  1. 1.
    F.F.M. De Mul, M.H. Koelink et al., Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue. Appl. Opt. 31(27), 5844–5851 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    X. Zhang, W. Gu, C. Jiang, B. Gao, P. Chen, Velocity measurement based on multiple self-mixing interference. Appl. Opt. 56(23), 6709–6713 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    E. Ramírez-Miquet, J. Perchoux, K. Loubière, C. Tronche, L. Prat, O. Sotolongo-Costa, Optical feedback interferometry for velocity measurement of parallel liquid–liquid flows in a microchannel. Sensors 16(8), 1233 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Norgia, A. Pesatori, S. Donati, Compact laser-diode instrument for flow measurement. IEEE Trans. Instrum. Meas. 65(6), 1478–1483 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Guo, L. Shi, Y. Yu, W. Xia, M. Wang, Micro-displacement reconstruction using a laser self-mixing grating interferomenter with multiple-diffraction. Opt. Express. 25(25), 31394–31406 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    K. Zhu, B. Guo, Y. Lu, S. Zhang, Y. Tan, Single-spot two-dimensional displacement measurement based on self-mixing interferometry. Optica 4(7), 729–735 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Donati, D. Rossi, M. Norgia, Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target. IEEE J. Quantum. Electron. 51(12), 1–8 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Huang, Z. Du et al., A study of vibration system characteristics based on laser self-mixing interference effect. J. Appl. Phys. 112(2), 2915–2923 (2012)CrossRefGoogle Scholar
  9. 9.
    Z.A. Khan, U. Zabit, O.D. Bernal, M.O. Ullah, T. Bosch, Adaptive cancellation of parasitic vibrations affecting a self-mixing interferometric laser sensor. IEEE Trans. Instrum. Meas. 66(2), 332–339 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Poittevin, P. Picart, C. Faure, F. Gautier, C. Pezerat, Multi-point vibrometer based on high-speed digital in-line holography. Appl. Opt. 54(11), 3185–3196 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J. Li, Y. Tan, S. Zhang, Generation of phase difference between self-mixing signals in a-cut Nd:YVO4 laser with a waveplate in the external cavity. Opt. Lett. 40(15), 3615–3618 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Churnside, Laser Doppler velocimetry by modulating a CO2 laser with backscattered light. Appl. Opt. 23(1), 61–66 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Tan, S. Zhang, S. Zhang, Y. Zhang, N. Liu, Response of microchip solid-state laser to external frequency-shifted feedback and its applications. Sci. Rep. 3(10), 2912 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    C. Chen, Y. Zhang, X. Wang, X. Wang, W. Huang, Refractive Index measurement with high precision by a laser diode self-mixing interferometer. IEEE Photonics J. 7(3), 1–6 (2015)Google Scholar
  15. 15.
    K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, L. Su, A Fiber-coupled self-mixing laser diode for the measurement of Young’s modulus. Sensors 16(6), 928 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Sudo, T. Ohtomo, Y. Takahashi, T. Oishi, K. Otsuka, Determination of velocity of self-mobile phytoplankton using a self-mixing thin-slice solid-state laser. Appl. Opt. 48(20), 4049–4055 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    P.A. Porta, D.P. Curtin, J.G. McInerney, Laser Doppler velocimetry by optical self-mixing in vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 14(12), 1719–1721 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    L. Lu, Z. Cao, J. Dai, B. Yu, Self-mixing signal in Er3+–Yb3+ codoped distributed Bragg reflector fiber laser for remote sensing applications up to 20 Km. IEEE Photonics Technol. Lett. 24(5), 392–394 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Du, L. Lu, W. Zhang et al., Measurement of the velocity inside an all-fiber DBR laser by self-mixing technique. Appl. Phys. B 113(1), 153–158 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Wu, D. Wang, R. Xiang, L. Lu, All-fiber configuration laser self-mixing Doppler velocimeter based on distributed feedback fiber laser. Sensors 16(8), 1179 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Zhou, M. Wang, D. Han, Experiment observation of self-mixing interference in distributed feedback laser. Opt. Express 14(12), 5301–5306 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Du, L. Lu, S. Wu, W. Zhang, B. Yang, R. Xiang, Z. Cao, H. Gui, J. Liu, B. Yu, Duplex self-mixing interference based on ultra-narrow linewidth fiber ring laser. Opt. Commun. 325(5), 60–67 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J. Geng, S. Staines, Z. Wang, J. Zong, Highly stable low-noise Brillouin fiber with ultranarrow spectral linwidth. IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    F. Liegeois, Y. Hernandez et al., High-efficiency, single-longitudinal-mode ring fibre laser. Electron. Lett. 41(13), 729–730 (2005)CrossRefGoogle Scholar
  25. 25.
    H.Y. Ryu, W.K. Lee, H.S. Moon et al., Stable single-frequency fiber ring laser for 25-GHz ITU-T girds utilizing saturable absorber filter. IEEE Photonics Technol. Lett. 17(9), 1824–1826 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    L. Lu, J. Yang, L. Zhai, R. Wang, Z. Cao, B. Yu, Self-mixing interference measurement system of a fiber ring laser with ultra-narrow linewidth. Opt. Express 20(8), 8598–8607 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    P.D. Dragic, Analytical model for injection-seeded erbium-doped fiber ring lasers. IEEE Photonics Technol. Lett. 17(8), 1629–1631 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    D. Han, M. Wang, J. Zhou, Self-mixing speckle in an erbium-doped fiber ring laser and its application to velocity sensing. IEEE Photonics Technol. Lett. 19(18), 1398–1400 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J.H. Churnside, Speckle from a rotating diffuse object. J. Opt. Soc. Am 72(11), 1464–1469 (1982)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiChina
  2. 2.College of Mechanical and Electronic EngineeringChao Hu UniversityChaohuChina
  3. 3.Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina

Personalised recommendations