Phase-shifting digital holographic data compression

  • Meha Hachani
  • Azza Ouled ZaidEmail author
  • Frédéric Dufaux
Research Article


Modern holography for 3D imaging allows to reconstruct all the parallaxes that are needed for a truly immersive visualization. Nevertheless, it possesses huge amount of data which induces higher transmission and storage requirements. To gain more popularity and acceptance, digital holography demands development of efficient coding schemes that provide significant data compression at low computation cost. Another issue that needs to be tackled when designing holography coding algorithms is interoperability with commonly used formats. In light of this, the upcoming JPEG Pleno standard aims to develop a standard framework for the representation and exchange of new imaging modalities such as holographic imaging while maintaining backward compatibility with the legacy JPEG decoders. This paper summarizes the early work on lossy compression of computer graphic holograms and analyses the efficiency of additional methods that may exhibit good satisfactory coding performance while considering the backward compatibility with legacy JPEG decoders. To validate our findings, the results of our tests are shown and interpreted. Finally, we also outline the emerging trends for future researches.


Holograms JPEG Region-based coding Bit allocation 



The authors are particularly grateful to David Blinder and Peter Schelkens (ETRO-VUB, Brussels, Belgium), Manuella Pereira (University of Beira Interior, Covilha, Portugal), José Peixeiro (Técnico Lisboa, Portugal), and Patrick Gioia (Orange Labs, Rennes, France) for their support, the very interesting discussions and for giving us access to their holographic display.


  1. 1.
    T. Okoshi, Three-Dimensional Imaging Techniques (Academic Press, New York, 1976)Google Scholar
  2. 2.
    D. Gabor, A new microscopic principle. J. Nat. 161, 777 (1948)ADSCrossRefGoogle Scholar
  3. 3.
    F. Yaras, H. Kang, L. Onural, State of the art in holographic displays: a survey. IEEE J. Disp. Technol. 6, 443–454 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    G.P. Tricoles, Computer generated holograms: an historical review. Appl. Opt. 26, 4351–4360 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    A. Symeonidou, D. Blinder, A. Munteanu, P. Schelkens, Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Opt. Express 23, 22149–22161 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    E. Darakis, T. Naughton, J. Soragha, B. Javidi, Measurement of compression defects in phase-shifting digital holographic data, in Proceedings of SPIE, Optical Information Systems IV, San Diego, California, vol. 6311 (2013)Google Scholar
  7. 7.
    Y. Xing, B. Pesquet-Popescu, F. Dufaux, Comparative study of scalar and vector quantization on different phase-shifting digital holographic data representations, in 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video, Budapest, Hungry (2014)Google Scholar
  8. 8.
    Y. Xing, M. Kaaniche, B. Pesquet-Popescu, F. Dufaux, Digital Holographic Data Representation and Compression (Academic Press, London, 2015)Google Scholar
  9. 9.
    E.A. Kurbatova, P.A. Cheremkhin, N.N. Evtikhiev, V.V. Krasnov, S.N. Starikov, Methods of compression of digital holograms. Phys. Proc. 73, 328–332 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    F. Dufaux, Y. Xing, B. Pesquet-Popescu, P. Schelkens, Compression of digital holographic data: an overview, in SPIE Proceedings of the Applications of Digital Image Processing XXXVIII, San Diego, CA (2015)Google Scholar
  11. 11.
    D. Blinder, A. Ahar, A. Symeonidou, Y. Xing, T. Bruylants, C. Schreites, B. Pesquet-Popescu, F. Dufaux, A. Munteanu, P. Schelkens, Open access database for experimental validations of holographic compression engines, in Proceedings of the 7th International Workshop on Quality of Multimedia Experience (QoMEX’2015), Messinia, Greece (2015)Google Scholar
  12. 12.
    J. Peixeiro, C. Brites, J. Ascenso, F. Pereira, Digital holography: benchmarking coding standards and representation formats, in IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA (2016)Google Scholar
  13. 13.
    M. Bernardo, P. Fernandes, A. Arrifano, M. Antonini, E. Fonseca, P. Fiadeiro, A. Pinheiro, M. Pereira, Holographic representation: hologram plane vs. object plane. Signal Process. Image Commun. 68, 193–206 (2018)CrossRefGoogle Scholar
  14. 14.
    JPEG Pleno Abstract and Executive Summary, ISO/IEC JTC 1/SC 29/WG1 N6922 Australia, Sydney (2015)Google Scholar
  15. 15.
    U. Schnars, W. Juptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, 85–101 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    U. Schnars, W. Juptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, 85–101 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (MaGraw-Hill, New York, 1996)Google Scholar
  18. 18.
    J.W. Goodman, Introduction to Fourier Optics, 3rd edn. (Roberts and Company Publishers, Atlanta, 1979)Google Scholar
  19. 19.
    I. Yamaguchi, T. Zhang, Phase shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Xing, M. Kaaniche, B. Pesquet-Popescu, F. Dufaux, Vector lifting scheme for phase-shifting holographic data compression. Opt. Eng. 53, 98–109 (2014)CrossRefGoogle Scholar
  21. 21.
    E. Darakis, J. Soraghan, Compression of interference patterns with application to phase-shifting digital holography. Appl. Opt. 45, 2437–2443 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    E. Darakis, J. Soraghan, Compression of phase-shifting digital holography interference patterns, applied optics, in Photon Management II, Proceedings of the SPIE, vol. 6187, ed. by J.T. Sheridan, F. Wyrowski (2006)Google Scholar
  23. 23.
    G.A. Mills, I. Yamaguchi, Effects of quantization in phase-shifting digital holography. Appl. Opt. 44, 1216–1225 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    T.J. Naughton, J.B. McDonald, B. Javidi, Efficient compression of Fresnel fields for internet transmission of three-dimensional images. Appl. Opt. 42, 4758–4764 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    T.J. Naughton, Y. Frauel, B. Javidi, E. Tajahuerce, Compression of digital holograms for three-dimensional object reconstruction and recognition. Opt. Express 41, 4124–4132 (2002)Google Scholar
  26. 26.
    A.E. Shortt, T.J. Naughton, B. Javidi, A companding approach for nonuniform quantization of digital holograms of three-dimensional objects. Opt. Express 14, 5129–5134 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    A. Arrifano, M. Antonini, M. Pereira, Multiple description coding of digital holograms using Maximum-a-Posteriori, in IEEE 4th European Workshop on Visual Information Processing (EUVIP), France, Paris (2013)Google Scholar
  28. 28.
    Y. Xing, M. Kaaniche, B. Pesquet-Popescu, F. Dufaux, Adaptive non separable vector lifting scheme for digital holographic data compression. Appl. Opt. 54, 98–109 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    E. Darakis, J. Soraghan, Use of Fresnelets for phase-shifting digital hologram compression. IEEE Trans. Image Process. 2006(15), 3804–3811 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Viswanathan, P. Gioia, L. Morin, Morlet wavelet transformed holograms for numerical adaptive view-based reconstruction, in Proceedings of SPIE, Optics and Photonics for Information Processing VIII, San Diego, California, vol. 9216 (2014)Google Scholar
  31. 31.
    K. Viswanathan, P. Gioia, L. Morin, Wavelet compression of digital holograms: towards a view-dependent framework, in Proceedings of SPIE, Applications of Digital Image Processing XXXVI, San Diego, California, vol. 8856 (2013)Google Scholar
  32. 32.
    I. Daubechies, S. Jaffard, J.L. Journes, A simple wilson orthonormal basis with exponential decay. SIAM J. Math. 22, 554–573 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    A. El Rhammad, P. Gioia, G. Antonini, M. Cagnazzo, B. Pesquet, Color digital hologram compression based on matching pursuit. Appl. Opt. 57(19), 1–13 (2018)Google Scholar
  34. 34.
    G.K. Wallace, The JPEG still picture compression standard. Commun. ACM 34, 30–44 (1991)CrossRefGoogle Scholar
  35. 35.
    A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 18, 38–58 (2001)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    G.J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264 AVC video coding. IEEE Trans. Circuits Syst. Video Technol. 13, 560–576 (2003)CrossRefGoogle Scholar
  37. 37.
    G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012)CrossRefGoogle Scholar
  38. 38.
    E. Darakis, J. Soraghan, Reconstruction domain compression of phase-shifting digital holograms. Appl. Opt. 46(3), 351–356 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  40. 40.
    V. Ratnakar, M. Livny, RD-OPT: an efficient algorithm for optimizing DCT quantization tables, in IEEE Processings of the Data Compression Conference (DCC), Snowbird, UT (1995), pp. 332–341Google Scholar
  41. 41.
    R.L. Graham, An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972)CrossRefzbMATHGoogle Scholar
  42. 42.
    A. Munteanu, J. Cornelis, G.V. Der Auwera, P. Cristea, Wavelet image compression—the quadtree coding approach. IEEE Trans. Inf. Technol. Biomed. 3, 176–185 (1999)CrossRefGoogle Scholar
  43. 43.
    A. Said, W. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)CrossRefGoogle Scholar
  44. 44.
    N. Chamakhi, I. Bouzidi, Zaid A. Ouled, F. Dufeaux, JPEG based compression of digital holograms, in IEEE European Workshop on Visual Information Processing, Tampere, Finland (2018)Google Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Communication Systems Laboratory, National Engineering School of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Lab. des Signaux et Systèmes (L2S)CNRS - CentraleSupelec - Univ. Paris-SudGif-sur-YvetteFrance

Personalised recommendations