Advertisement

Full-optical Mach–Zehnder interferometer-based discrete Fourier transform

  • Ashis Kumar MandalEmail author
Research Article

Abstract

From the last few decades, the discovery of ultrahigh-speed all-optical switches based on semiconductor optical amplifier (SOA), especially in interferometric configuration, is very pronouncing due to their high repetition rate, low power consumption, fast switching time, easily integrated, noise and tolerance and operationally versatile, which have brought the revolution in optical information processing fields. In this paper, all-optical computing tool SOA-based 2 × 2 full-optical Mach–Zehnder interferometer (MZI) is employed because it can be used to design more complex circuits and subsystems of enhanced combinational and sequential functionality. In this work, (a) the switching network with its two switching actions and (b) the all-optical 8 × 8 crossbar network architecture, i.e., a multistage cube network for N = 8, using MZI-based 2 × 2 optical crossbar switch for discrete Fourier transform are proposed. Numerical simulation of this work is done with OptiSystem v7.0 to achieve the performance of the proposed circuit.

Keywords

Mach–Zehnder interferometer Optical crossbar switch Switching network Discrete Fourier transform 

Notes

References

  1. 1.
    S. Okamoto, A. Watanable, K.-I. Sato, Optical path cross-connect node architectures for photonic transparent network. J. Lightw. Technol. 14(6), 1410–1422 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    T. Chikama, H. Onaka, S. Kuroyanagi, Photonic networking using optical add drop multiplexer and optical cross-connects. FUJITSU Sci. Tech. J. 35(1), 46–55 (1999)Google Scholar
  3. 3.
    L. Geo, J. Sun, X. Sun, T. Li, W. Gao, Y. Yan, D. Zhang, Simulation and optimization of a polymer 2 × 2 multimode interference Mach–Zehnder interferometer electro optic switch with push pull electrodes. Opt. Laser Technol. 42, 85–92 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    H. Obara, Extended class of reduced crossbar switches, in: The 2009 International Conference on Advanced Technologies for Communication (IEEE, 2009), p. 129–32, ISBN: 978-1-4244-5139-5/09Google Scholar
  5. 5.
    R. Schreieck, M. Kwakernaak, H. Jackel, E. Gamper, E. Gini, W. Vogt et al., Ultafast switching dynamics of Mach–Zehnder interferometer switches. IEEE Photonics Technol. Lett. 13(6), 603–605 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    K.E. Zoiros, J. Vardakas, T. Houbavlis, M. Moyssidis, Investigation of SOA-assisted Sagnac re-circulating shift register switching characteristics. Optik 116, 527–541 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    G.P. Agrwal, Applications of Nonlinear Fibre Optics (Academic, New Delhi; 2001) [(An imprint of Elsevier, San Diego, USA) Chapter 3–4]Google Scholar
  8. 8.
    J. Li, L. Li, L. Jin, C. Li, All-optical switch and limiter based on nonlinear polarization in Mach–Zehnder interferometer coupled with a polarization maintaining fiber-ring resonator. Opt. Commun. 260, 318–323 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    X. Ye, P. Ye, M. Zhang, All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer. Opt. Fiber Technol. 12(4), 312–316 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    G.P. Agrwal, Fibre-Optic Communication Systems, 3rd ed. (Wiley, New York; 2002) [Chapter 8 (WDM Components)]Google Scholar
  11. 11.
    H. Dong, H. Sun, Q. Wang, N.K. Dutta, J. Jaques, 80 Gb/s all-optical logic AND operation using Mach–Zehnder interferometer with differential scheme. Opt. Commun. 265(1), 79–83 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J.N. Roy, S. Mukhopadhyay, A minimization scheme of optical space variant logic operation in a combinational architecture. Opt. Commun. 119, 499–504 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    W. Li, M. Zhang, P. Ye, Simulation of all-optical XOR gate with a semiconductor optical amplifier Mach–Zehnder interferometer sped up by a continuos-wave light. J. Opt. Netw. 4(8), 524–530 (2005)CrossRefGoogle Scholar
  14. 14.
    F. Qian, G. Li, M.S. Alam, M.A. Karim, Digit-set-restricted modified signed-digit arithmetic based on optoelectronic shared content-addressable memory. Proc. SPIE 5201, 167–173 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    T. Chattopadhyay, All-optical cross-bar network architecture using TOAD based Interferometric switch and designing of reconfigurable logic unit. Opt. Fiber Technol. 17, 558–567 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    G. Goertzel, An algorithm for the evolution of finite trigonometric series. Am. Math. Monthly 65, 34–35 (1958)MathSciNetCrossRefGoogle Scholar
  17. 17.
    I. Armstrong, I. Andonovic, A.E. Kelly, Semiconductor optical amplifiers: performance and applications in optical packet switching. J. Opt. Netw. 3(12), 882 (2004)CrossRefGoogle Scholar
  18. 18.
    A.K. Mandal, G.K. Maity, All optical reversible NOR gates using TOAD. Int. J. Comput. Appl. 973-93-80883-42-5 (ISSN: 0975-8887) (2014) 18–23Google Scholar
  19. 19.
    A.K. Mandal, S. Samanta, G.K. Maity, N.B. Manik, Implementation of reed muller expansion technique using Mach–Zehnder interferometer based all optical reversible gates. Sci Eng (2015).  https://doi.org/10.1007/978-81-322-2367-2_61 Google Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Department of PhysicsChakur Haris Seminary High SchoolHowrahIndia

Personalised recommendations