High-efficiency terahertz generation combined with cavity phase matching and quasi-phase matching

  • Shijia Zeng
  • Fangsen Xie
  • Zhiming RaoEmail author
Research Article


High-efficiency terahertz generation by difference frequency generation (DFG) combined with cavity phase matching (CPM) and quasi-phase matching (QPM) is predicted in this paper. Numerical simulations show that the power conversion efficiency can reach a maximum value of 1.63%, which corresponds to a photon conversion efficiency of 66%. The efficiency is increased by ~ 102 times when compared with the DFG based on CPM or QPM. This phase matching method is expected to become a substitute for a single CPM or QPM.


Difference frequency generation Cavity phase matching Quasi-phase matching Terahertz generation 



The research was supported by the National Natural Science Foundation of China (NSFC, No. 11664017) and Science and Technology Project funded by Provincial Department of Education (No. GJJ160305).


  1. 1.
    T. Nagatsuma, G. Ducournau, C.C. Renaud, Advances in terahertz communications accelerated by photonics. Nat. Photonics 10, 371–379 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    H. Jabri, H. Eleuch, Dynamics in terahertz semiconductor microcavity: quantum noise spectra. J. Opt. 20, 055201 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum PP, 1-1 (2017)Google Scholar
  4. 4.
    S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50, 043001 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    M.P. Fischer, J. Bühler, G. Fitzky, T. Kurihara, S. Eggert, A. Leitenstorfer, D. Brida, Coherent field transients below 15 THz from phase-matched difference frequency generation in 4H-SiC. Opt. Lett. 42, 2687 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Boyko, P.G. Schunemann, S. Guha, N.Y. Kostyukova, D.B. Kolker, V.L. Panyutin, G.M. Marchev, V. Pasiskevicius, A. Zukauskas, F. Mayorov, Optical parametric oscillator pumped at ~ 1 µm with intracavity mid-IR difference-frequency generation in OPGaAs. Opt. Mater. Express 8, 549 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    I. Breunig, J.U. Fürst, K. Hanka, K. Buse, Continuous-wave optical parametric oscillation tunable up to 8 μm wavelength. Optica 4, 189 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Billat, D. Grassani, M. Pfeiffer, S. Kharitonov, T.J. Kippenberg, C.S. Brès, Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    R. Wolf, Y. Jia, S. Bonaus, C.S. Werner, S.J. Herr, I. Breunig, K. Buse, H. Zappe, Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5, 872 (2018)CrossRefGoogle Scholar
  10. 10.
    E. Rosencher, B. Vinter, V. Berger, Second-harmonic generation in nonbirefringent semiconductor optical microcavities. J. Appl. Phys. 78, 6042–6045 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Z.D. Xie, X.J. Lv, Y.H. Liu, W. Ling, Z.L. Wang, Y.X. Fan, S.N. Zhu, Cavity phase matching via an optical parametric oscillator consisting of a dielectric nonlinear crystal sheet. Phys. Rev. Lett. 106, 083901 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    H.B. Lin, S.F. Li, Y.W. Sun, G. Zhao, X.P. Hu, X.J. Lv, S.N. Zhu, High-performance cavity-phase matching by pump reflection. Opt. Lett. 38, 1957–1959 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K. Saito, T. Tanabe, Y. Oyama, Pump enhanced monochromatic terahertz-wave parametric oscillator toward megawatt peak power. Opt. Lett. 39, 5681–5684 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency. Appl. Phys. Lett. 98, 031102 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Lu, X. Wang, L. Miao, D. Zuo, Z. Cheng, Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser. Appl. Phys. B 103, 387–390 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    S. Zeng, F. Xie, Z. Rao, Theoretical analysis of difference frequency generation for terahertz generation in a sheet microcavity from the CO2 laser. Optik 172, 1111–1116 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    R.H. Stolen, Far-infrared absorption in high resistivity GaAs. Appl. Phys. Lett. 15, 74–75 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005), pp. 204–209Google Scholar
  19. 19.
    Z.-M. Rao, X.-B. Wang, Y.-Z. Lu, D.-L. Zuo, T. Wu, Two schemes for generating efficient terahertz waves in nonlinear optical crystals with a mid-infrared CO2 laser. Chin. Phys. Lett. 28, 074215 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Rao, X. Wang, D. Zuo, Terahertz generation in quasi-phase-matched GaAs wafers by pulse CO2laser. Proc SPIE Int Soc Opt Eng 8604, 860415 (2013)Google Scholar
  21. 21.
    Y. Okuno, K. Uomi, M. Aoki, T. Tsuchiya, Direct wafer bonding of III-V compound semiconductors for free-material and free-orientation integration. IEEE J. Quantum Electron. 33, 959–969 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    T. Skauli, P.S. Kuo, K.L. Vodopyanov, T.J. Pinguet, O. Levi, L.A. Eyres, J.S. Harris, M.M. Fejer, B. Gerard, L. Becouarn, E. Lallier, Improved dispersion relations for GaAs and applications to nonlinear optics. J. Appl. Phys. 94, 6447–6455 (2003)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations