Advertisement

Fabrication of microlenses on ytterbium-doped double-cladding microstructured optical fibers with a CO2 laser for effective optical coupling

  • Yang Xiao
  • Guiyao Zhou
  • Wang Xian
  • Yun chen
  • Zhiyun Hou
  • Changming Xia
  • Jiantao Liu
  • Haixia Fan
  • Yi Zheng
  • Zhenqiang Chen
Research Article
  • 56 Downloads

Abstract

Due to the air holes in cladding, it is difficult to process for end faces of ytterbium-doped double-cladding microstructured optical fibers. In this paper, we demonstrate the fabricating method of microlenses on ytterbium-doped double-cladding microstructured optical fibers with a CO2 laser to enhance the coupling efficiency. The theoretical and experimental investigation is carried out to study the effect of minor axis semidiameter and major axis semidiameter of ellipsoidal microlenses on coupling efficiency. The coupling efficiency is up to 88%, which is 14.6% higher than that of the perpendicular flat-end microstructured optical fiber using a free space optical path. These results suggest that the proposed end face processing on microstructured optical fibers provides a straightforward solution for the production of microlenses for laser coupling applications in high-power fiber lasers.

Keywords

Microstructured optical fibers Ytterbium-doped CO2 laser Ellipsoidal microlenses Optical coupling 

Notes

Acknowledgements

The authors acknowledge Guangdong Province Key Laboratory of Nano-photonic Functional Materials and Devices for experimental components and Xian Wang for help with the experiments. And the authors are also grateful to National Natural Science Foundation of China (NSFC) (61575066, 61527822, 61735005), Guangdong Natural Science Foundation (2017A030313333), Science and Technology Program of Guangzhou (201707010133), Science and Technology Planning Project of Guangdong Province (2017KZ010201), National Key Research and Development Program of China (2018YFB0407400) and GDUPS (2017).

References

  1. 1.
    J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express 11(7), 818–823 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    T.A. Birks, J.C. Knight, P. St, J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    P. Wan, L.-M. Yang, J. Liu, All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. Opt. Express 21(24), 29854–29859 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    C. Robin, I. Dajani, B. Pulford, Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt. Lett. 39(3), 666–669 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    D.C. Brown, H.J. Hoffman, Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quantum Electron. 37(2), 207–216 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    S. Xinyang, Y. Zheng, J. Yang, Q. Li, J. Li, Method for end-face treatment of specialty optical fiber with thick-walled silica glass tubes. Appl. Opt. 55(29), 8271–8275 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    G.-J. Kong, J. Kim, H.-Y. Choi, J.E. Im, B.-H. Park, U.-C. Paek, B.H. Lee, Lensed photonic crystal fiber obtained by use of an arc discharge. Opt. Lett. 31(7), 894–896 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Z.-S. Peng, A. L. Wang, Optical coupling between a lensed photonic crystal fiber and a laser diode, in proceedings of IEEE conference on communications, circuits and systems (IEEE, 2006), pp. 2005–2008Google Scholar
  9. 9.
    J.K. Kim, C. Hagemann, T. Schreiber, T. Peschel, R. Eberhardt, A. Tünnermann, Monolithic all-glass device combining pump coupling and end cap scheme for high-power fiber lasers. Proc. SPIE 7580, 75802F (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Mukhopadhyay, Coupling of a laser diode to single mode circular core graded index fiber via parabolic microlens on the fiber tip and identification of the suitable refractive index profile with consideration for possible misalignments. J. Opt. 45(4), 312–323 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Mukhopadhyay, Efficient coupling of a laser diode to a parabolic microlens tipped circular core photonic crystal fiber using ABCD matrix formalism with consideration for possible misalignments. J. Opt. 47(1), 47–60 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Zaboub, A. Guessoum, N.-E. Demagh, A. Guermat, Fabrication of polymer microlenses on single mode optical fibers for light coupling. Opt. Commun. 366, 122–126 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    H.Y. Choi, S.Y. Ryu, J. Na, B.H. Lee, I.-B. Sohn, Y.-C. Noh, J. Lee, Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems. Opt. Lett. 33(1), 34–36 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    D. Kato, Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with spherical end. J. Appl. Phys. 44(6), 2756–2758 (1973)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Guangzhou Key Laboratory for Special Fiber Photonic Devices and ApplicationsSouth China Normal UniversityGuangzhouChina
  2. 2.Guangdong Province Key Laboratory of Nano-photonic Functional Materials and DevicesSouth China Normal UniversityGuangzhouChina
  3. 3.School of ScienceBeijing Jiaotong UniversityBeijingChina
  4. 4.Department of Optoelectronic EngineeringJinan UniversityGuangzhouChina

Personalised recommendations