Advertisement

Design and implementation of underwater laser imaging test aquarium

  • M. Darwiesh
  • A. F. El-Sherif
  • H. S. Ayoub
  • Y. H. El-Sharkawy
  • M. F. Hassan
  • Y. H. Elbashar
Short Communication
  • 28 Downloads

Abstract

A test aquarium was built to perform and simulate different marine environment to optimize laser imaging of submerged targets. The setup can be used to study many parameters as required (i.e., the correlation between the detection angle, the target surface topology and color, water turbidity due to clay and mud, and laser type at different depths, and backgrounds). A theoretical model of the detection process was tested using MATLAB simulation. The system was able to simulate light extinction of the real deep and shallow aqua environments due to plankton chlorophyll. The used dummy targets are approximately 1/500 of the real submarines and naval mines. These targets were illuminated by several laser wavelengths in order to identify the targets with different color and shapes. The setup permits to test the efficiency of different target camouflage versus optical detection.

Keywords

Laser detection Underwater laser Imaging aquarium 

References

  1. 1.
    D. Manolakis, G. Shaw, Detection algorithms for hyperspectral imaging applications. Signal Process. Mag. IEEE 19(1), 29–43 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    T. Heege, A. Bogner, N. Pinnel, Mapping of submerged aquatic vegetation with a physically based process chain, in Remote Sensing (International Society for Optics and Photonics, 2004)Google Scholar
  3. 3.
    T. Kutser, I. Miller, D.L.B. Jupp, Mapping coral reef benthic substrates using hyperspectral spaceborne images and spectral libraries. Estuar. Coast. Shelf Sci. 70(3), 449–460 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S. Jay, M. Guillaume, J. Blanc-Talon, Underwater target detection with hyperspectral data: solutions for both known and unknown water quality. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(4), 1213–1221 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Volent, G. Johnsen, F. Sigernes, Microscopic hyperspectral imaging used as biooptical taxonomic tool for micro- and macroalgae. Appl. Opt. 48, 4170–4176 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    E. Sakshaug, G. Johnsen, Z. Volent, Light, in Ecosystem Barents Sea, ed. by E. Sakshaug, G. Johnsen, K. Kovacs (Tapir Academic Press, Trondheim, 2009), pp. 117–138Google Scholar
  7. 7.
    G. Johnsen, Z. Volent, E. Sakshaug, F. Sigernes, L.H. Pettersson, Remote sensing in the Barents Sea, in Ecosystem Barents Sea, ed. by E. Sakshaug, G. Johnsen, K. Kovacs (Tapir Academic Press, Trondheim, 2009), pp. 139–166Google Scholar
  8. 8.
    G. Johnsen, Z. Volent, H. Dierssen, R. Pettersen, M. Van Ardelan, F. Søreide, P. Fearns, M. Ludvigsen, M. Moline, Underwater hyperspectral imagery to create biogeochemical maps of seafloor properties, in Subsea Optics and Imaging, ed. by J. Watson, O. Zielinski (Woodhead Publishing, Cambridge, 2013), pp. 508–535CrossRefGoogle Scholar
  9. 9.
    F.F. Sabins, Remote sensing for mineral exploration. Ore Geol. Rev. 14, 157–183 (1999)CrossRefGoogle Scholar
  10. 10.
    Z. Volent, G. Johnsen, F. Sigernes, Kelp forest mapping by use of airborne hyperspectral imager. J. Appl. Remote Sens. 1(011503), 1–21 (2007)Google Scholar
  11. 11.
    R. Pettersen, Identification of Marine Organisms Using Chemotaxonomy and Hyperspectral Imaging. (Philosophiae Doctor), Norwegian University of Science and Technology, TrondheimGoogle Scholar
  12. 12.
    R. Pettersen, G. Johnsen, P. Bruheim, T. Andreassen, Development of hyperspectral imaging as a bio-optical taxonomic tool for pigmented marine organisms. Org. Divers. Evol. 14(2), 237–246 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Darwiesh, A. F. El-Sherif, Y. H. El-Sharkawy, M. F. Hassan, Simulation and characterization of underwater target detection using LIDAR system, in Proceedings of 17th International Conference on Aerospace Sciences & Aviation Technology, Military Technical College, Cairo, Egypt. April 2017Google Scholar
  14. 14.
    K.R. Gundersen, J.S. Corbin, C.L. Hanson, M.L. Hanson, R.B. Hanson, D.J. Russell, A. Stollar, O. Yamadas, Structure and biological dynamics of the oligotrophic ocean photic zone off the Hawaiian islands. Pac. Sci. 30(1), 45–68 (1976)Google Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  • M. Darwiesh
    • 1
  • A. F. El-Sherif
    • 1
  • H. S. Ayoub
    • 2
  • Y. H. El-Sharkawy
    • 3
  • M. F. Hassan
    • 1
  • Y. H. Elbashar
    • 4
  1. 1.Engineering Physics DepartmentMilitary Technical CollegeCairoEgypt
  2. 2.Physics DepartmentCairo UniversityCairoEgypt
  3. 3.Biomedical Engineering DepartmentMilitary Technical CollegeCairoEgypt
  4. 4.Egypt Nanotechnology Center (EGNC)Cairo UniversityGizaEgypt

Personalised recommendations