Advertisement

Ultra-high negative dispersion and nonlinearity based single mode photonic crystal fiber: design and analysis

  • Md. Ibadul Islam
  • Kawsar Ahmed
  • Bikash Kumar Paul
  • Sawrab Chowdhury
  • Shuvo Sen
  • Md. Shadidul Islam
  • Sayed Asaduzzaman
  • Ali Newaz Bahar
Research Article
  • 6 Downloads

Abstract

In this article, we have proposed a large negative dispersion coefficient and highly nonlinear polarization maintaining single mode square photonic crystal fiber. The proposed design is extremely attractive for compensation of chromatic dispersion of − 1052.60 ps/(nm km) to − 2421.90 ps/(nm km) around 1340–1640 nm wavelength band. Guiding characteristics are investigated applying finite element method containing perfectly matched layer boundary condition. Simulation outcomes ensure the possibility of large negative dispersion coefficient and low confinement loss of − 2015.30 ps/(nm km) and 3.41 × 101 dB/m respectively, at 1550 nm wavelength. The proposed fiber also exhibits highly nonlinear coefficient of 99.73 W−1 km−1 at the same wavelength. Moreover, V parameter assures the single mode operation of the structured fiber over the whole band of interest. The structural diameter variation of ± 2% over the optimum value is simulated and reported to explore the practical feasibility. Besides, effective area is also presented and explained. From overall investigations, it can be reported that the proposed fiber will be an attractive candidate in high-speed transmission system for broadband dispersion compensation, nonlinear optics and sensing applications as well.

Keywords

Ultra-high negative dispersion Nonlinear coefficient Dispersion compensating S-PCF Effective area Single mode fiber Confinement loss 

Notes

Acknowledgements

The authors are grateful to those who participated in this research work.

References

  1. 1.
    L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Jung, G. Brambilla, K. Oh, D.J. Richardson, Highly birefringent silica microfiber. Opt. Lett. 35, 378–380 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    G. Vienne, Y. Li, L. Tong, P. Grelu, Observation of nonlinear microfiber resonator. Opt. Lett. 33, 1500–1502 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion. Opt. Exp. 11, 843–852 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bala et al., Highly birefringent, highly negative dispersion compensating photonic crystal fiber. Appl. Opt. 56(25), 7256–7261 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    T.A. Birks et al., Dispersion compensation using single-material fibers. IEEE Photonics Technol. Lett. 11(6), 674–676 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    L.M. Tong, J.Y. Lou, E. Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 12, 1025–1035 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    G. Brambilla, V. Finazzi, D.J. Richardson, Ultra-low-loss optical fiber nanotapers. Opt. Express 12, 2258–2263 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Q.M. Zhang, M. Li, Q. Hao, D.H. Deng, H. Zhou, H.P. Zeng, L. Zhan, X. Wu, L.Y. Liu, L. Xu, Fabrication and characterization of on-chipoptical nonlinear chalcogenide nanofiber devices. Opt. Lett. 35, 3829–3831 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    V. Grubsky, J. Feinberg, Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber. Opt. Commun. 274, 447–450 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S.G. Leon-Saval, T.A. Birks, W.J. Wadsworth, P.J. Russell, Supercontinuum generation in submicron fiber waveguides. Opt. Express 12, 2864–2869 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    M.M. Haque et al., A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications. Photonics Nanostruct. Fundam. Appl. 14, 63–70 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Koshiba, K. Saitoh, Structural dependence of effective area and mode field diameter for holey fibers. Opt. Express 11, 1746–1756 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S.M.A. Razzak, Y. Namihira, Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers. IEEE Photonics Technol. Lett. 20(4), 249–251 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Lægsgaard, S.B. Libori, K. Hougaard, J. Riishede, T.T. Larsen, T. Sørensen, T.P. Hansen, K.P. Hansen, M.D. Nielsen, J.B. Jensen, A. Bjarklev, Dispersion properties of photonic crystal fibers - issues and opportunities. MRS Proceedings (2004).  https://doi.org/10.1557/PROC-797-W7.1
  16. 16.
    S.G. Li, X.D. Liu, L.T. Hou, Numerical study on dispersion compensating property in photonic crystal fibers. Acta Phys. Sin. 53, 1880 (2004)Google Scholar
  17. 17.
    M.I. Hasan et al., Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20(1), 32–38 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Islam, Broadband dispersion compensation of single mode fiber by using modified decagonal photonic crystal fiber having high birefringence. J. Lasers Opt. Photon. 2, 123 (2015)Google Scholar
  19. 19.
    M.R. Hasan et al., A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64(3), 218–225 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    S. Yang, Y. Zhang, L. He, S. Xie, Broadband dispersion-compensating photonic crystal fiber. Opt. Lett. 31(19), 2830 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M.K. Lee, P.S. Ma, I.K. Lee, H.W. Kim, Y.Y. Kim, Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98(1), 011909 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    P.S. Maji, P.R. Chaudhuri, Dispersion properties of the square-lattice elliptical-core PCFs. Am. J. Opt. Photonics (AJOP) 2(1), 1–6 (2014)Google Scholar
  23. 23.
    K. Saitoh, M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38(7), 927–933 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Habib et al., Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers. Optik Int. J. Light Electron Opt. 124(19), 3851–3855 (2013)CrossRefGoogle Scholar
  25. 25.
    S.F. Kaijage et al., Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Jpn. J. Appl. Phys. 48(5), 052401 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    P.S. Maji, P.R. Chaudhuri, Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications. Photonics Nanostruct. Fundam. Appl. 19, 12–23 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    S. Kunimasa, K. Masanori, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11, 3100–3109 (2003)CrossRefGoogle Scholar
  28. 28.
    N.A. Mortensen, J.R. Folkenberg, M.D. Nielsen, K.P. Hansen, Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett. 28(20), 1879 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    M.M. Haque et al., Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik Int. J. Light Electron Opt. 125(11), 2608–2611 (2014)CrossRefGoogle Scholar
  30. 30.
    M.I. Hasan et al., Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photonics Nanostruct. Fundam. Appl. 12(2), 205–211 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    R.H. Stolen, Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron. 15, 1157–1160 (1979)ADSCrossRefGoogle Scholar
  32. 32.
    H. Ademgil, S. Haxha, F.A. Malek, Highly nonlinear bendinginsensitive birefringent photonic crystal fibres. Engineering 2, 608–616 (2010)CrossRefGoogle Scholar
  33. 33.
    Q. Li, C. Liu, H. Li, T. Sun, Research on dispersion compensating property and nonlinear coefficient of photonic crystal fiber, in: Symposium on Photonics and Optoelectronics, 14–16 Aug 2009Google Scholar
  34. 34.
    H. El Hamzaoui et al., Sol–gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express 20(28), 29751 (2012)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.Department of Information and Communication Technology (ICT)Mawlana Bhashani Science and Technology University (MBSTU)Santosh, TangailBangladesh
  2. 2.Group of Bio-photomatiχTangailBangladesh
  3. 3.Department of Software Engineering (SWE)Daffodil International UniversityShukrabad, DhakaBangladesh

Personalised recommendations