Journal of Optics

, Volume 48, Issue 1, pp 26–30 | Cite as

Higher-order intermodal antibunching for couple-cavity optomechanical system

  • Kousik MukherjeeEmail author
  • Paresh Chandra Jana
Research Article


Higher-order intermodal antibunching for couple-cavity optomechanical system is investigated by solving Heisenberg’s equations of motion analytically for various field modes using short-time dynamics under strong coupling regime neglecting the effect of dissipation and environmental effects. Temporal variation of this nonclassical effect is also studied for different values of coupling strength and photon-hopping interaction term. The degree of nonclassicality increases as order grows.


Optomechanics Antibunching Higher-order nonclassicality 


  1. 1.
    H.J. Kimble, M. Dangenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    M. Bamba, Origin of strong photon antibunching in-weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)ADSCrossRefGoogle Scholar
  3. 3.
    J.G. Rarity, P.R. Tapster, E. Jakeman, Observation of sub-Poissonian light in Parametric down conversion. Opt. Commun. 62, 201 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    H.J. Kimble, D.F. Walls, Squeezed states of the electromagnetic field: introduction to feature issue. J. Opt. Soc. Am. B. 4, 10 (1987)CrossRefGoogle Scholar
  5. 5.
    M.C. Teich, B.E.A. Salch, Observation of sub-Poissonian Frank–Hertz light at 253.7 nm. J. Opt. Soc. Am. B. 2, 275 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    J. Mckeever et al., Experimental realization of a one-atom laser in the regime of strong coupling. Nat. (Lond.) 425, 268 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    G. Rempe et al., Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 64, 2783 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    W. Choi et al., Observation of sub-Poissonian photon statistics in the cavity-QED microlaser. Phys. Rev. Lett. 96, 093603 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    D. Press et al., Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    C.G. Hübner et al., Photon antibunching and collective effects in the fluorescence of single bichromophoric molecules. Phys. Rev. Lett 91, 093903 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    J. Chan et al., laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    E. Knill et al., A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    G.S. Agarwal et al., Comment on “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit”. Phys. Rev. Lett. 86, 1389 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    V. Giovannetti et al., Quantum-enhanced positioning and clock synchronization. Nature 412, 417 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    I. Buluta, F. Nori, Quantum simulators. Science 326, 108 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.I. Cirac et al., Quantum state transfer and entanglement distribution among distant nodes in a quantum networks. Phys. Rev. Lett. 78, 3321 (1997)CrossRefGoogle Scholar
  17. 17.
    A.I. Lvovsky et al., Optical quantum memory. Nat. Photon. 3, 706 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    H.P. Yuen, J.H. Shapiro, Optical communication with two photon coherent states part-III: quadrature measurement relaizable with photoemissive detectors. IEEE Trans. Inf. Theory 24, 657 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    M. Hillery, Quantum cryptography with squeeze state. Phys. Rev. A 61, 022309 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S.L. Braunstein, H.J. Kimble, Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    V.N. Gorbachev et al., Teleportation of entangled states. J. Opt. B Quantum Semiclass. Opt. 3, S25 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    N.B. An, Multimode higher-order antibunching and squeezing in trio coherent state. J. Opt. B Quantum Semiclass. 4, 222–227 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    M. Avenhaus et al., Accessing higher order correlations in quantum optical state by time multiplexing. Phys. Rev. Lett. 104, 063602 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A. Allevi, S. Olivares, M. Bondani, Measuring higher order photon number correlation in experiments with multimode pulsed quantum states. Phys. Rev. A 85, 063835 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    K. Zhang et al., Proposal for an Optomechanical Microwave Sensor at the Sub Photon Level (2014). arxiv:1401.0070 [quant-ph]
  26. 26.
    C.M. Caves et al., On the measurement of a weak classical force coupled to quantum mechanical oscillator: issue of principle. Rev. Mod. Phys. 52, 341 (1980)ADSCrossRefGoogle Scholar
  27. 27.
    K. Stannigel et al., Optomechanical transducer for long-distance communication. Phys. Rev. Lett. 105, 220501 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    K. Stannigel et al., Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    X.W. Xu, Y.J. Li, Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. B 46, 035502 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    P. Rabl, Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Y.-L. Liu et al., Mode Coupling and Photon Antibunching in a Bimodal Cavity Containing a Dipole-Quantum-Emitter (2015). arXiv:1506.06889v1 [quant-ph]
  32. 32.
    A. Kronwald et al., Full photon statistics of a light beam transmitted through an optomechanical system. Phys. Rev. A 87, 013847 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nat. (Lond.) 436, 87 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    P.D. Nation, Nonclassical mechanical states in an optomechanical micromaser analog. Phys. Rev. A 88, 053828 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    N. Lörch, K. Hammerer, Sub-Poissonian phonon lasing in three-mode optomechanics. Phys. Rev. A 91, 061803(R) (2015)ADSCrossRefGoogle Scholar
  36. 36.
    J.Q. Liao, Q.Q. Wu, and F. Nori, Entangling Two Macroscopic Mechanical Mirrors in a Two-Cavity Optomechanical System (2014). arxiv:1401.1384v1 [quant-ph]
  37. 37.
    A.A. Rehaily, S. Bougouffa, Entanglement Generation Between Two Mechanical Resonators in Two Optomechanical Cavities (2016). arxiv:1605.04082v1 [quant-ph]
  38. 38.
    K. Mukherjee, P.C. Jana, Nonclassical properties (squeezing, antibunching, entanglement) for couple-cavity optomechanical system. J. Opt. 0339, 12596 (2016)Google Scholar
  39. 39.
    N.E. Flowers-Jacobs et al., Fibre cavity base optomechanical device. Appl. Phys. Lett. 101, 221109 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    S. Bose, K. Jacobs, P.L. Knight, Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    K. Mukherjee, P.C. Jana, Squeezing and entanglement in quadratically coupled optomechanical system. J. Phys. Sci. 19, 143–155 (2014)Google Scholar
  42. 42.
    J. Jae et al., Coherent State of Light is Nonclassical: Irreducibility (2016). arXiv:1607.01576v1 [quant-ph]
  43. 43.
    C.T. Lee, Higher-order criteria for nonclassical effects in photon statistics. Phys. Rev. A 41, 1721 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    F. Massel et al., Multimode circuit optomechanics near the quantum limit. Nat. Photon. 3, 987 (2012)Google Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.Department of Physics and TechnophysicsVidyasagar UniversityMidnaporeIndia
  2. 2.Department of PhysicsGovt. General Degree College Gopiballavpur-IIBeliaberahIndia

Personalised recommendations