Journal of Optics

, Volume 47, Issue 4, pp 553–560 | Cite as

Hyperspectral laser imaging of underwater targets

  • M. Darwiesh
  • A. F. El-Sherif
  • H. S. Ayoub
  • Y. H. El-sharkawy
  • M. F. Hassan
  • Y. H. ElbasharEmail author
Tutorial Paper


In this work an exclusive hyperspectral imaging system was implemented to detect immerged and sub-immerged targets in aqua environments using laser illumination. Under different water extinction levels the system was capable of detecting and differentiating between several dummy targets with different colors and shapes. A study of the effect of deep background on the target identification is also inclusive. The tests revealed a strong dependence of target detectivity on the laser wavelength, the water turbidity, and target surface shape and color. This work helps in the future design of airborne underwater target detection system capable of tracking stealth submarine at different depths and aqua environments.


Laser detection Underwater laser Spectral laser imaging 


  1. 1.
    J.R. Apel, Principles of Ocean Physic, vol. 38, International Geophysics Series (Academic Press, Cambridge, 1987), pp. 509–584Google Scholar
  2. 2.
    H. Arst, Optical Properties and Remote Sensing of Multicomponental Water Bodies (Praxis Publishing, Chichester, 2003), pp. 8–28Google Scholar
  3. 3.
    C. Yang-Wei, Field measurement of laser attenuation in natural water. Mar. Technol. China 1(2), 41–48 (2000)Google Scholar
  4. 4.
    Z. Volent, G. Johnsen, F. Sigernes, Microscopic hyperspectral imaging used as biooptical taxonomic tool for micro- and macroalgae. Appl. Opt. 48, 4170–4176 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    E. Sakshaug, G. Johnsen, Z. Volent, Light, in Ecosystem Barents Sea, ed. by E. Sakshaug, G. Johnsen, K. Kovacs (Tapir Academic Press, Trondheim, 2009), pp. 117–138Google Scholar
  6. 6.
    C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Harcourt Publishers Ltd, San Diego, 1994)Google Scholar
  7. 7.
    M.A Moline, M.J. Oliver, C.D. Mobley, L. Sundman, T. Bensky, T. Bergmann, W.P. Bissett, J. Case, E.H. Raymond, O.M.E. Schofield, Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance. J. Geophys. Res 112(C11016) (2007)Google Scholar
  8. 8.
    A. Salih, A. Larkum, G. Cox, M. Kühl, O. Hoegh-Guldberg, Fluorescent pigments in corals are photoprotective. Nat. Springer 408, 14 (2000)Google Scholar
  9. 9.
    I. Shulman, S.H.D. Haddock, D.J. McGillicuddy, J.D. Paduan, W.P. Bisset, Numerical modeling of bioluminescence distributions in the coastal ocean. J. Atmos. Ocean. Technol. 20, 1060–1068 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    K.R. Gundersen, J.S. Corbin, C.L. Hanson, M.L. Hanson, R.B. Hanson, D.J. Russell, A. Stollar, O. Yamadas, Structure and biological dynamics of the oligotrophic ocean photic zone off the Hawaiian Islands. Pac. Sci. 30(1), 45–68 (1976)Google Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  • M. Darwiesh
    • 1
  • A. F. El-Sherif
    • 1
  • H. S. Ayoub
    • 2
  • Y. H. El-sharkawy
    • 3
  • M. F. Hassan
    • 1
  • Y. H. Elbashar
    • 4
    Email author
  1. 1.Engineering Physics DepartmentMilitary Technical CollegeCairoEgypt
  2. 2.Physics DepartmentCairo UniversityCairoEgypt
  3. 3.Biomedical Engineering DepartmentMilitary Technical CollegeCairoEgypt
  4. 4.Egypt Nanotechnology Center (EGNC)Cairo UniversityGizaEgypt

Personalised recommendations