Journal of Optics

, Volume 47, Issue 4, pp 445–455 | Cite as

Binding energy and the third-order nonlinear optical susceptibility of an exciton in GaAs/AlGaAs core/shell spherical quantum dot

  • Zhi-Hai ZhangEmail author
  • Jun Sheng Li
  • Jian Tang
  • Liang Liang Yang
  • Kang-Xian Guo
  • Jian-Hui Yuan
Research Article


In this study, we have calculated the energy levels and binding energies for exciton associated with the ground state and some low-lying states in GaAs/AlGaAs core/shell spherical quantum dot (QD) by using the finite difference method. The correctness of the numerical results is verified by comparison with the analytical solution without considering exciton effects. Simultaneously, the third harmonic generation (THG) in GaAs/AlGaAs core/shell spherical QD is theoretically investigated within the framework of the compact-density-matrix approach and iterative method for both cases with and without exciton effects. All paths of the system are considered which generates third harmonics. Our results indicate that the energy levels and binding energies are depended dramatically on the size of the QD. The THG is greatly enhanced because of the quantum confinement of exciton. It is over two times bigger than that obtained by without considering exciton effects. In addition, the resonant peaks and its corresponding to resonant energy are also taken into account.


Exciton effect Nonlinear optical Quantum dot Binding energy 



Project supported by the National Science Foundation of China (under Grant Nos. 11604289 and 61475039), the Guangxi Department of Education Research Projects in China (under Grant No. KY2015LX046), and the Natural Science Foundation of Guangxi in China (under Grant No. 2016GXNSFBA380017).


  1. 1.
    T. Chakraborty, Quantum Dots: A Survey of the Properties of Artificial Atoms (Elsevier, Amsterdam, 1999)CrossRefGoogle Scholar
  2. 2.
    J. Tersoff, C. Teichert, M.G. Lagally, Self-organization in growth of quantum dot superlattices. Phys. Rev. Lett. 76, 1675–1678 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    N. Kristaedter, O.G. Schmidt, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, AYu. Egorov, A.E. Zhukov, M.V. Maximov, P.S. Kopev, ZhI Alferov, Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl. Phys. Lett. 69, 1226–1228 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Fomin, Physics of Quantum Rings (Springer, Berlin, 2014)CrossRefGoogle Scholar
  5. 5.
    Z.H. Zhang, G.C. Zhuang, K.X. Guo, J.H. Yuan, Donor-impurity-related optical absorption and refractive index changes in GaAs/AlGaAs core/shell spherical quantum dots. Superlatt. Microstruct. 100, 440–447 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M. Kumar, S. Gumber, S. Lahon, P. Kumar Jha, M. Mohan, Third harmonic generation in quantum dot with Rashba spin orbit interaction. Eur. Phys. J. B 87, 71 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    G.H. Wang, Highly efficient third-harmonic generation from resonant intersubband transitions in core/shell spherical quantum dots. Opt. Commun. 355, 1–5 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    E. Leobandung, I. Guo, Y. Wang, S.Y. Chou, Observation of quantum effects and Coulomb blockade in silicon quantum dot transistors at temperatures over 100 K. Appl. Phys. Lett. 67, 938 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    J. Phillips, Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    E.H. Li, B.L. Weiss, The optical properties of AlGaAs/GaAs hyperbolic quantum well structures. J. Appl. Phys. 70, 1054 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    İ. Karabulut, M.E. Mora-Ramos, C.A. Duque, Nonlinear optical rectification and optical absorption in GaAs-\(\text{ Ga }_{1-x}\text{ Al }_x\) As asymmetric double quantum wells: combined effects of applied electric and magnetic fields and hydrostatic pressure. J. Lumin. 131, 1502–1509 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Khordad, H. Bahramiyan, Electronic and optical properties of a lens shaped quantum dot under magnetic field: second and third-harmonic generation. Commun. Theor. Phys. 62, 283–289 (2014)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Vaseghi, G. Rezaei, M. Malian, Spin-orbit interaction effects on the optical properties of spherical quantum dot. Opt. Commun. 287, 241–244 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    R. Ben Mahrsia, M. Choubani, L. Bouzaiene, H. Maaref, Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wtting layers under hydrostatic pressure and temperature. J. Alloys Compd. 671, 200–207 (2016)CrossRefGoogle Scholar
  15. 15.
    C.J. Zhang, K.X. Guo, Z.E. Lu, Exciton effects on the optical absorptions in one-dimensional quantum dots. Physica E 36, 92–97 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Y.B. Yu, S.N. Zhu, K.X. Guo, Exciton effects on the nonlinear optical rectification in one-dimensional quantum dots. Phys. Lett. A 335, 175–181 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    G. Rezaei, B. Vaseghi, F. Taghizadeh, M.R.K. Vahdani, M.J. Karimi, Electronic and optical properties of a nanoring in the presence of external magnetic field. Superlatt. Microstruct. 48, 450–457 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    S. Shojaei, A. Soltani Vala, Nonlinear optical rectification of hydrogenic impurity in a disk-like parabolic quantum dot: the role of applied magnetic field. Physica E 70, 108–112 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    L.A. Juharyan, E.M. Kazaryan, L.S. Petrosyan, Electronic states and interband light absorption in semi-spherical quantum dot under the influence of strong magnetic field. Solid State Commun. 139, 537–540 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    R.W. Boyd, Nonlinear Optics (Academic Press, Boston, 1992)Google Scholar
  21. 21.
    P. Sujanah, A.J. Peter, C.W. Lee, Optical studies of an exciton and a biexciton in a CdTe/ZnTe quantum dot nanostructure. Opt. Commun. 336, 120–126 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  • Zhi-Hai Zhang
    • 1
    Email author
  • Jun Sheng Li
    • 1
  • Jian Tang
    • 1
  • Liang Liang Yang
    • 1
  • Kang-Xian Guo
    • 2
  • Jian-Hui Yuan
    • 3
  1. 1.School of New Energy and Electronic EngineeringYancheng Teachers UniversityYanchengPeople’s Republic of China
  2. 2.College of Physics and Electronic EngineeringGuangzhou UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of PhysicsGuangxi medical universityNanningPeople’s Republic of China

Personalised recommendations