Journal of Optics

, Volume 47, Issue 4, pp 428–436 | Cite as

A novel micro-structured fiber for OAM mode and LP mode simultaneous transmission

  • Minnan Xu
  • Guiyao ZhouEmail author
  • Cheng Chen
  • Gai Zhou
  • Zicheng Sheng
  • Zhiyun Hou
  • Changming Xia
Research Article


In this paper, a novel dual-guided microstructured fiber supporting orbital angular momentum (OAM) mode and linear polarization (LP) mode transmission is proposed to solve the high-volume data transmission. A variety of parameters of the fiber are considered comprehensively under different conditions by using the full-vector finite element method. The results show that the fiber can support 30 OAM modes and 2 LP modes over the whole C wavelength band by making full use of the air-holes to isolate electromagnetic field. The crosstalk between two channels is lower than that previously reported, and the total dispersion is nearly zero and flat. For instance, the isolation parameter of the EH71 mode reaches up to 86.02 dB and the dispersion coefficient varies from −  0.26 to 1.62 ps/(km nm). The large index difference between core and cladding is beneficial to low crosstalk. In addition, this fiber is easier to fabricate, because the preform needs only stacking technique to adjust the structure geometry size. This fiber can be used in short-distance and large-capacity transmission system.


Fiber design and fabrication Fiber properties Microstructured fibers Modes 



This work was financially supported by the National Natural Science Foundation of China (61575066, 61735005, and 61527822), GDUPS (2017), Science and Technology Program of Guangzhou, China (201707010133), Science and Technology Planning Project of Guangdong Province (2017KZ010101), The National Key Research and Development Program of China (2008YFB0407400).


  1. 1.
    J. Zhang, Z. Wu, T. Huang, X. Shao, P. Shum, Modes effective refractive index difference measurement in few-mode optical fiber. Procedia Eng. 140, 77–84 (2016)CrossRefGoogle Scholar
  2. 2.
    T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto, Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems. J. Lightw. Technol. 140, 1484–1493 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    C. Chen, G. Zhou, G. Zhou, M. Xu, Z. Hou, C. Xia et al., A multi-orbital-angular-momentum multi-ring micro-structured fiber with ultra-high-density and low-level crosstalk. Opt. Commun. 368, 27–33 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Y.-J. Bao, S.-G. Li, W. Zhang, G.-W. An, Z.-K. Fan, Designing of a polarization beam splitter for the wavelength of 1310 nm on dual-core photonic crystal fiber with high birefringence and double-zero dispersion. Chin. Phys. B 23, 104218 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    I.B. Djordjevic, M. Arabaci, LDCP-coded orbital angular momentum (OAM) modulation for free-space optical communication. Opt. Express 18, 24722–24728 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    A. Willner, M. Tur, N. Bozinovic, P. Kristensen, S. Ramachandran. Orbital angular momentum (OAM) based mode division multiplexing (MDM) over a Km-length Fiber, in European Conference and Exhibition on Optical Communication, 2012Google Scholar
  7. 7.
    P.Z. Dashti, F. Alhassen, H.P. Lee, Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Phys. Rev. Lett. 96, 043604 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Padgett, J. Courtial, L. Allen, Light’s orbital angular momentum. Int. Quantum Electron. Conf. 57(5), 139–140 (2004)Google Scholar
  9. 9.
    L. Wang, P. Vaity, S. Chatigny, Y. Messaddeq, L.A. Rusch, S. LaRochelle, Orbital-angular-momentum polarization mode dispersion in optical fibers. J. Lightw. Technol. 34, 1661–1671 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    X.C. Yuan, P. Jia, T. Lei, M. Zhang, C.J. Min, Y.R. Li, Z.H. Li, H.B. Niu, Optical vortices and optical communication with orbital angular momentum. J. Shenzhen Univ. Sci. Eng. 4, 331–346 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Ramachandran, P. Kristensen, M.F. Yan, Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34(16), 2525–2527 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    S. Golowich, P. Kristensen, N. Bozinovic, P. Gregg, S. Ramachandran, Fibers supporting orbital angular momentum states for information capacity scaling. Front. Opt. 24, 12 (2012)Google Scholar
  13. 13.
    C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, L.A. Rusch, Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Express 22, 26117–26127 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M. Zhu, W. Zhang, L. Xi, X. Tang, X. Zhang, A new designed dual-guided ring-core fiber for OAM mode transmission. Opt. Fiber Technol. 25, 58–63 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S. Ramachandran, P. Kristensen, M.F. Yan, Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34, 2525–2527 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    T. Birk, J. Knight, P. Russell, Endlessly single mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    J. Su, X. Dong, C. Lu, Characteristics of few mode fiber under bending. IEEE J. Sel. Top. Quantum Electron. 10(1109), 1 (2016)Google Scholar
  19. 19.
    T. Jiajing, L. Keping, S. Kunimasa, Design and optimization of 3-mode 12-core dual-ring structured few-mode multi-core fiber. Opt. Commun. 38, 30–36 (2016)Google Scholar
  20. 20.
    A. Gaur, V. Rastogi, Design and analysis of annulus core few mode EDFA for modal gain equalization. IEEE Photon. Technol. Lett. 10, 1 (2016)Google Scholar
  21. 21.
    P. Gregg, P. Kristensen, S. Ramachandran, Conservation of orbital angular momentum in air core optical fibers. Optica 2, 267–270 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Ramachandran, P. Gregg, P. Kristensen, S.E. Golowich, On the scalability of ring fiber designs for OAM multiplexing. Opt. Express 23, 3721–3730 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    L. Shuhui, W. Jian, Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photon. J. 5, 7101007 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh et al., An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction. IEICE Trans. Commun. E94-B, 409–416 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    N.A. Mortensen, Effective area of photonic crystal fibers. Opt. Express 10, 341–348 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    L.H. Jiang, L.T. Hou, Q.Q. Yang, Comparison and analysis of the basic characteristics of photonic crystal fiber with three typical structures. Acta Phys. Sin. 59, 4726–4731 (2010)Google Scholar
  27. 27.
    Y.J. Bao, S.G. Li, W. Zhang, G.W. An, Z.K. Fan, Designing of a polarization beam splitter for the wavelength of 1310 nm on dual-core photonic crystal fiber with high birefringence and double-zero dispersion. Chin. Phys. B 23(10), 104218 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    W.X. Yang, G.Y. Zhou, C.M. Xia, W. Wang, H.J. Hu, L.T. Hou, An improved design method for C-band photonic crystal fibers with flat near-zero dispersion. Acta Phys. Sin. 60, 104222-1–104222-6 (2011)Google Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.Guangzhou Key Laboratory for Special Fiber Photonic Devices and ApplicationsSouth China Normal UniversityGuangzhouChina
  2. 2.Specially Functional Fiber Engineering Technology Research Center of Guangdong Higher Education InstitutesSouth China Normal UniversityGuangzhouChina
  3. 3.Guangdong Provincial Engineering Technology Research Center for Microstructured Functional Fibers and DevicesSouth China Normal UniversityGuangzhouChina

Personalised recommendations