Journal of Optics

, Volume 47, Issue 4, pp 467–474 | Cite as

Evaluation of link-compensated 32 × 40 Gbit/s DWDM free space optical (FSO) transmission

  • Rajan MiglaniEmail author
  • Jagjit Singh Malhotra
Research Article


Due to rapid penetration of data hungry devices in our daily lives, free space optical (FSO) communication systems have emerged as an efficient last mile solution in delivering sufficient optical bandwidth to the end users. In this paper we have demonstrated the effectiveness of complimenting optical multiplexing (DWDM) with FSO using fiber-based subsystem. Based on results obtained, the proposed technique promises seamless communication along with enhanced data rates. Using standard reference channel width of 0.8 nms, we have successfully demonstrated working of 32 × 40 Gbps DWDM-FSO link over range of 3 km, delivering an acceptable BER of 10−11 in case of symmetrically compensated systems. Minimal variation in BER of the order of (less than) 10−4 is recorded when the link length is extended from 1 to 4 km.


Free space optics DWDM Dispersion compensation Link compensation techniques Optical amplifier 


  1. 1.
    A.K. Majumdar, Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2, 345–396 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Arnon, J.R. Barry, G.K. Karagiannidis, R. Schober, M. Uysal (eds.), Advanced Optical Wireless Communication (Cambridge University Press, Cambridge, 2012)Google Scholar
  3. 3.
    M.A. Khalighi, M. Uysal, Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Kaushal, G. Kaddoum, Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017)CrossRefGoogle Scholar
  5. 5.
    L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media, vol. 152 (Society of Photo Optical, Bellingham, 2005)CrossRefGoogle Scholar
  6. 6.
    K. Kaur, R. Miglani, G.S. Gaba, Communication theory review perspective on channel modeling, modulation and mitigation techniques in free space optical communication. Int. J. Control Theory Appl. 09(11), 4969–4978 (2016)Google Scholar
  7. 7.
    L. Yang, X. Gao, M.S. Alouini, Performance analysis of free-space optical communication systems with multiuser diversity over atmospheric turbulence channels. IEEE Photonics J. 6(2), 1–17 (2014)Google Scholar
  8. 8.
    R. Miglani, J.S. Malhotra, Review of channel modelling techniques for optical wireless links. Pertan. J. Sci. Technol. 25(3), 859–870 (2017)Google Scholar
  9. 9.
    V. Sharma, G. Kaur, High speed long reach OFDM-FSO transmission link incorporating OSSB and OTSB schemes. Opt. Int. J. Light Electron Opt. 124(23), 6111–6114 (2013)CrossRefGoogle Scholar
  10. 10.
    H.E. Nistazakis, G.S. Tombras, On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels. J. Opt. Laser Technol. 44(7), 2088–2094 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Navidpour, M. Uysal, M. Kavehrad, BER performance of free space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007)CrossRefGoogle Scholar
  12. 12.
    V. Sharma, M. Lumba, G. Kaur, Severe climate sway in coherent CDMA-OSSB-FSO transmission system. Opt. Int. J. Light Electron Opt. 125(19), 5705–5707 (2014)CrossRefGoogle Scholar
  13. 13.
    E. Zedini, H. Soury, M.S. Alouini, Dual-hop FSO transmission systems over gamma–gamma turbulence with pointing errors. IEEE Trans. Wirel. Commun. 16(2), 784–796 (2017)CrossRefGoogle Scholar
  14. 14.
    M.R. Bhatnagar, Z. Ghassemlooy, Performance analysis of gamma–gamma fading FSO MIMO links with pointing errors. J. Lightwave Technol. 34(9), 2158–2169 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, B. Mukherjee, Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access. J. Opt. Netw. 4(11), 3781–3786 (2005)Google Scholar
  16. 16.
    R.S. Kaler et al., Comparison of pre-, post-, and symmetrical- dispersion compensation schemes for 10 Gb/s NRZ links using standard and dispersion compensated fibers. Opt. Commun. 209(1), 107–123 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    H. Hsu, W.C. Lu, H.L. Minh, Z. Ghassemlooy, Y. Yu, S. Liaw, 2 × 80 Gbit/s DWDM bidirectional wavelength reuse optical wireless transmission. IEEE Photonics J. 5(4), 7901708 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, M. Matsumoto, 1.28 Terabit/s (32 × 40 Gbit/s) WDM transmission system for free space optical communications. IEEE J. Sel. Areas Commun. 27(9), 1639–1645 (2009)CrossRefGoogle Scholar
  19. 19.
    H.-S. Chen, H.P.A. van den Boom, E. Tangdiongga, A.M.J. Koonen, 30 Gbit/s Bi-directional transparent optical transmission with an MMF access and an indoor optical wireless link. IEEE Photon. Technol. Lett. 24(7), 572–574 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    P.L. Chen, S.T. Chang, S.T. Ji, S.C.B Lin, Demonstration of 16 channels 10 Gb/s WDM free space transmission over 2.16 km, in Proc. IEEE/LEOS Summer Topical Meeting (Taipei, 2008), p. 235–236Google Scholar
  21. 21.
    K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, High-speed duplex optical wireless communication system for indoor personal area networks. Opt. Exp. 18(24), 25199–25216 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H.L. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, L. Jianhui, A 1.25-Gb/s indoor cellular optical wireless communications demonstrator. IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, 4 × 12.5 Gb/s WDM optical wireless communication system for indoor applications. J. Lightwave Technol. 29(13), 1988–1996 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, High-speed optical wireless communication system for indoor applications. IEEE Photon. Technol. Lett. 23(8), 519–521 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S. Parkash, A. Sharma, H. Singh, H.P. Singh, Performance investigation of 40 GB/s DWDM over free space optical communication system using RZ modulation format. Adv. Opt. Technol., Hindawi, vol. 2016, Article ID 4217302Google Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.IKG-PTUJalandharIndia
  2. 2.DAVIETJalandharIndia

Personalised recommendations