Advertisement

Journal of Optics

, Volume 47, Issue 4, pp 481–488 | Cite as

Investigation on chirping characteristics of a 1.55-µm directly modulated distributed feedback laser

  • Abida Yousuf
  • Hakim Najeeb-ud-din
Research Article

Abstract

We investigate the laser chirp characteristics of a 1.55-µm directly modulated DFB laser by simulation. The chirp is characterized by two important parameters: gain compression and α-factor. Measurements of the chirp parameters using transfer function and the chirp-to-modulated power ratio are presented here. We have identified that the characteristic frequency (fc) represents the boundary between the adiabatic and transient chirp, i.e., the adiabatic chirp dominates for f < fc and the transient chirp dominates for f > fc. Frequency excursion for both chirp terms is well characterized by the phase rate equation model that describes the chirping behavior, switching transients and the power overshoots. Finally, proper adiabatic chirp is generated by adjusting: the laser device parameters and the operating conditions to achieve dispersion-tolerant system.

Keywords

Distributed feedback laser (DFB) Chirping (adiabatic and transient) Chirp-to-modulated power ratio (CPR) Gain compression α-Factor 

References

  1. 1.
    I. Tomkos, I. Roudas, R. Hesse, N. Antoniades, A. Boskovic, R. Vodhanel, Extraction of LRE parameters for simulation of metropolitan area transmission systems and networks. Opt. Commun. 194, 109–129 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Tang, K.A. Shore, 30 Gb/s signal transmission over 40 km directly modulated DFB laser based single mode fiber links without optical amplification and dispersion compensation. J. Lightw. Technol. 24(6), 2318 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    K. Czotsher, S. Weisser, A. Leven, J. Rosenzweig, Intensity modulation and chirp of 1.55 μm multiple-quantum-well laser diodes: modeling and experimental verification. IEEE J. Sel. Top. Quantum Electron. 5(3), 606–612 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    A. Yousuf, H. Najeeb, Effect of gain compression above and below threshold on the chirp characteristics of 1.55 µm DFB laser. Opt. Rev. 23(6), 897–906 (2016)CrossRefGoogle Scholar
  5. 5.
    I. Tomkos, Demonstration of negative dispersion fibers for DWDM metropolitan networks. IEEE J. Sel. Top. Quantum Electron. 7, 439–460 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    B.W. Hakki, Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber. J. Lightw. Technol. 10(7), 964–979 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    C.D. Campos, P.R. Horche, A.M. Mínguez, Interaction of semiconductor laser chirp with fiber dispersion: impact on WDM directly modulated system performance, in The Fourth International Conference on Advances in Circuits, Electronics and Micro-electronics (2011). ISBN: 978-1-61208-150Google Scholar
  8. 8.
    S. Yamamoto, M. Kuwazuru, H. Wakabayashi, Y. Iwamoto, Analysis of chirp power penalty in 1.55 μm DFB-LD high speed optical fiber transmission systems”. J. Lightw. Technol. 5(10), 1518–1524 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    H. Gysel, M. Ramachandra, Electrical predistortion to compensate for combined effect of laser chirp and fibre dispersion. Electron. Lett. 27(5), 421–423 (1991)CrossRefGoogle Scholar
  10. 10.
    R. Hui, A. Mecozzi, A.D. Ottavi, P. Spano, Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking. Electron. Lett. 26(14), 997–998 (1990)CrossRefGoogle Scholar
  11. 11.
    C. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    M. Osinski, Linewidth broadening factor in semiconductor laser. IEEE J. Quantum Electron. 23(11), 09–29 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    T.L. Koch, R.A. Linke, Effect of nonlinear gain reduction on semiconductor laser wavelength chirping. Appl. Phys. Lett. 48(10), 613–615 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    A. Hamgauer, G. Wysocki, Gain compression and linewidth enhancement factor in mid-IR quantum cascade lasers. IEEE J. Quantum Electron. 21(6), 1200411 (2015)Google Scholar
  15. 15.
    G. Wang, R. Nagarajan, D. Tauber, J. Bowers, Reduction of damping in high speed semiconductor lasers. IEEE Photonics Technol. Lett. 5(6), 642–645 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    L. Koch, R.A. Linke, Effect of nonlinear gain reduction on semiconductor laser wavelength chirping. Appl. Phys. Lett. 48(10), 613–615 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Cartledge, R.C. Srinivasan, Extraction of DFB laser rate equation parameters system simulation purposes. J. Lightw. Technol. 15(5), 852–860 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd edn. (Van Nostrand Reinhold, New York, 1993)Google Scholar
  19. 19.
    S. Kobasyashi, Y. Yamamoto, M. Ito, T. Kimura, Direct frequency modulation in AlGaAs semiconductor lasers. IEEE J. Quantum Electron. 30(4), 428–441 (1982)Google Scholar
  20. 20.
    A. Villafranca, J. Lasobras, I. Garces, Precise characterization of the frequency chirp in directly modulated DFB lasers, in Proceedings of Spanish Conference Electron Devices (2007), pp. 173–176Google Scholar
  21. 21.
    T. Zahang, N.H. Zhu, Measurement of chirp parameter and modulation index of a semiconductor laser based on optical spectrum analysis. IEEE Photonics Technol. Lett. 19(4), 227–229 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    K. Kechaou, F. Grillot, J.G. Provost, B. Thedrez, D. Erasme, Self injected semiconductor distributed feedback laser for frequency chirp stabilization. Opt. Express 20(23), 26062–26074 (2012).  https://doi.org/10.1364/OE.20.026062 ADSCrossRefGoogle Scholar
  23. 23.
    L. Bjerkan, A. Royset, L. Hafskjaer, D. Myhre, Measurement of laser parameters for simulation of high speed fiberoptic systems. J. Lightw. Technol. 14(5), 839–850 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    R.C. Srivasana, J.C. Cartledge, On using fiber transfer function to characterize laser chirp and fiber dispersion. IEEE Photonics Technol. Lett. 7(11), 1327–1329 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    T.L. Koch, J. Bowers, Nature of wavelength chirping indirectly modulated semiconductor lasers. J. Electron. Lett. 20(25/26), 1038–1040 (1984)CrossRefGoogle Scholar
  26. 26.
    R.S. Tucker, High-speed modulation of semiconductor lasers. J. Lightw. Technol. 3, 1180–1192 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Agrawal, N.K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold Co., New York, 1986)CrossRefGoogle Scholar
  28. 28.
    D. Mahgerefteh, Y. Matsui, X. Zheng, K. McCallion, Chirp managed laser and applications. IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2018

Authors and Affiliations

  1. 1.Electronics and Communication DepartmentNational Institute of TechnologySrinagarIndia

Personalised recommendations