Physical constraint method to determine optimal overlap factor of Raman lidar

Research Article
  • 120 Downloads

Abstract

Overlap factor is an instrumental phenomenon caused by the incomplete overlay of the transmitting and receiving systems of a light detection and ranging (lidar) system. Conventional methods of overlap calculation for Raman lidar by combining Mie and N2-Raman signals is based on a user-assumed lidar ratio, assumption of which may introduce larger uncertainties when the characters of an aerosol loading is unknown. In this study, a physical constraint method is proposed to obtain an appropriate lidar ratio for overlap profile calculation of Raman lidar. The experiment of six representative cases verified that the correction of the overlap profile obtained by our method is practical and feasible. The signal of the experiment was derived from the Raman lidar at the Southern Great Plains site (SGPRL) of Atmospheric Radiation Measurement Program. The particle extinction coefficient of Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation was used as a reference value. The mean absolute errors of the particle extinction coefficient derived based on the proposed method is small (7.0–22.9 Mm−1) for 0–2 km by comparing the reference value. Additionally, the large bias below 0.8 km between the particle extinction coefficient corrected by the SGPRL-released overlap profile and the reference value suggest that the overlap profile applied in SGPRL still has larger room to be improved.

Keywords

Overlap Lidar Aerosol particle Atmospheric 

References

  1. 1.
    C. Weitkamp, Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, Berlin, 2005)Google Scholar
  2. 2.
    W. Wang, W. Gong, F. Mao et al., Long-term measurement for low-tropospheric water vapor and aerosol by Raman lidar in Wuhan. Atmosphere 6(4), 521–533 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    F. Mao, W. Wang, Q. Min et al., Approach for selecting boundary value to retrieve Mie-scattering lidar data based on segmentation and two-component fitting methods. Opt. Express 23(11), A604–A613 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    K. Stelmaszczyk, M. Dell’Aglio, S. Chudzynski et al., Analytical function for lidar geometrical compression form-factor calculations. Appl. Opt. 44(7), 1323–1331 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    W. Wang, W. Gong, F. Mao et al., An improved iterative fitting method to estimate nocturnal residual layer height. Atmosphere 7(8), 106 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    W. Wang, F. Mao, W. Gong et al., Evaluating the governing factors of variability in nocturnal boundary layer height based on elastic lidar in Wuhan. Int. J. Environ. Res. Public Health 13(11), 1071 (2016)CrossRefGoogle Scholar
  7. 7.
    U. Wandinger, A. Ansmann, Experimental determination of the lidar overlap profile with Raman lidar. Appl. Opt. 41(3), 511–514 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hu, X. Wang, Y. Wu et al., Geometrical form factor determination with Raman backscattering signals. Opt. Lett. 30(14), 1879–1881 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    W. Gong, F.Y. Mao, J. Li, OFLID: simple method of overlap factor calculation with laser intensity distribution for biaxial lidar. Opt. Commun. 284(12), 2966–2971 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S.W. Dho, Y.J. Park, H.J. Kong, Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere. Appl. Opt. 36(24), 6009–6010 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    J. Su, M.P. McCormick, Z. Liu et al., Obtaining a ground-based lidar geometric form factor using coincident spaceborne lidar measurements. Appl. Opt. 49(1), 108–113 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J.L. Guerrero-Rascado, M.J. Costa, D. Bortoli et al., Infrared lidar overlap function: an experimental determination. Opt. Express 18(19), 20350–20359 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    R. Velotta, B. Bartoli, R. Capobianco et al., Analysis of the receiver response in lidar measurements. Appl. Opt. 37, 6999–7007 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    I. Berezhnyy, A combined diffraction and geometrical optics approach for lidar overlap function computation. Opt. Lasers Eng. 47(7–8), 855–859 (2009)CrossRefGoogle Scholar
  15. 15.
    F. Mao, W. Gong, J. Li, Geometrical form factor calculation using Monte Carlo integration for lidar. Opt. Laser Technol. 44(4), 907–912 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. Li, C. Li, Y. Zhao et al., Geometrical constraint experimental determination of Raman lidar overlap profile. Appl. Opt. 55(18), 4924–4928 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    NOAA, U. and U.A. Force, US standard atmosphere, 1976. 1976, NOAA-S/TGoogle Scholar
  18. 18.
    A. Ansmann, M. Riebesell, U. Wandinger et al., Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio. Appl. Phys. B 55(1), 18–28 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    A. Ansmann, U. Wandinger, M. Riebesell et al., Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt. 31(33), 7113 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    H. Chen, S.Y. Chen, Y.C. Zhang et al., Experimental determination of Raman lidar geometric form factor combining Raman and elastic return. Opt. Commun. 332, 296–300 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    W. Wang, W. Gong, F. Mao et al., Measurement and study of lidar ratio by using a Raman lidar in Central China. Int. J. Environ. Res Public Health 13(5), 508 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Mao, W. Gong, T. Logan, Linear segmentation algorithm for detecting layer boundary with lidar. Opt. Express 21(22), 26876–26887 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    W. Gong, W. Wang, F. Mao et al., Improved method for retrieving the aerosol optical properties without the numerical derivative for Raman–Mie lidar. Opt. Commun. 349, 145–150 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    F.G. Fernald, Analysis of atmospheric lidar observations: some comments. Appl. Opt. 23(5), 652–653 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    T.J. Thorsen, Q. Fu, R.K. Newsom et al., Automated retrieval of cloud and aerosol properties from the ARM Raman lidar. Part I: feature detection. J Atmos. Ocean. Technol 32(11), 1977–1998 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Ferrare, D. Turner, M. Clayton, et al., Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res. 111, D05S08 (2006). doi:10.1029/2005JD005836 Google Scholar
  27. 27.
    T.J. Thorsen, Q. Fu, Automated retrieval of cloud and aerosol properties from the ARM Raman lidar. Part II: extinction. J. Atmos. Ocean. Technol. 32(11), 1999–2023 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    R.K. Newsom, J. Goldsmith, C. Sivaraman, Raman Lidar MERGE Value-Added Product. https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-189.pdf. (2017)
  29. 29.
    F.J.S. Lopes, E. Landulfo, M.A. Vaughan, Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil. Atmos. Meas. Tech. 6(11), 3281–3299 (2013)CrossRefGoogle Scholar
  30. 30.
    W. Wang, F. Mao, Z. Pan et al., Validation of VIIRS AOD through a comparison with a sun photometer and MODIS AODs over Wuhan. Remote Sens. 9(5), 403 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    D.M. Winker, J.R. Pelon, M.P. McCormick, The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In: Proceedings of SPIE (2003)Google Scholar
  32. 32.
    Z. Pan, W. Gong, F. Mao, et al., Macrophysical and optical properties of clouds over East Asia measured by CALIPSO. J. Geophys. Res. Atmos. 120, 11653–11668 (2015). doi:10.1002/2015JD023735 ADSCrossRefGoogle Scholar
  33. 33.
    Z. Pan, F. Mao, W. Gong et al., Observation of clouds macrophysical characteristics in China by CALIPSO. J. Appl. Remote Sens. 10(3), 036028 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Ferrare, D.D. Turner, L.H. Brasseur et al., Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains. J. Geophys. Res. Atmos. (1984–2012) 106(D17), 20333–20347 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    A. Ansmann, M. Riebesell, C. Weitkamp, Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett. 15(13), 746–748 (1990)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote SensingWuhan UniversityWuhanChina
  2. 2.Collaborative Innovation Center for Geospatial TechnologyWuhanChina
  3. 3.School of Remote Sensing and Information EngineeringWuhan UniversityWuhanChina

Personalised recommendations