Advertisement

Journal of Optics

, Volume 46, Issue 1, pp 1–7 | Cite as

Simulation of improved CMOS digital pixel sensor for computer vision

  • Y. V. ChavanEmail author
  • D. K. Mishra
  • D. S. Bormane
  • A. D. Shaligram
Research Article
  • 148 Downloads

Abstract

The charge coupled device (CCDs) were used as image sensor for the imaging. Thereafter CMOS sensors introduced like passive pixel sensors, active pixel senor (APS) could give the advantages in the implementation, so the APS could compete with CCDs. However, APS suffered with the problem of poor resolution and fill factor, which resulted the CCD image sensor to retain popularity. The digital pixel sensor (DPS) has overcome the problems associated in APS. This gave many more advantages for effective pixel optimization. Recently, DPS came with the op-amp comparator to implement the ADC on chip for each pixel. This has definitely added advantage over the previous sensor in terms of power, pixel size and the fill factor. In this paper comparator used is modified and replaced by the CMOS inverter with proper setting of the operating point over existing DPS image sensor. In the first part the analysis for the modification is discussed while in the second part simulation results are given for the pixel implementation of the image sensor. The results are tabulated for 2 × 2 and 4 × 4 array implementation.

Keywords

Image sensors APS PPS CCD Comparator circuits [20] DPS ADCs 

References

  1. 1.
    K. Chow, A. Krymski, E.R. Fossum, A 1.2 V micro-power CMOS active pixel image sensor for portable applications, in International Solid State Circuits Conference, (San Francisco, 2000), pp. 114–115Google Scholar
  2. 2.
    S. Hirai, M. Zakeji, A. Mosebuchi, T. Tsuboi, FPGA-based real time vision system. J. Robot. Mechatron. 17(4), 1–7 (2005)Google Scholar
  3. 3.
    S.E. Holland, D.E. Groom, P. Palaio, R.J. Stover, M. Wei, Fully depleted, back illuminated CCDs fabricated on high-resistivity silicon. IEEE Trans. Electron Devices 50(2), 225–235 (2002)ADSGoogle Scholar
  4. 4.
    P. Bedabrata, Y. Guang, Performance CMOS imager with a flushed-reset photodiode pixel. IEEE Tans. Electron Devices 50(1), 48–55 (2003)CrossRefGoogle Scholar
  5. 5.
    A. Kitchen, A. Bermak, A. Bouzerdoum, A digital pixel sensor array with programmable dynamic range. IEEE Trans. Electron Devices 52(12), 2591–2601 (2005)CrossRefADSGoogle Scholar
  6. 6.
    A. Elouardi, S. Bouaziz, A. Dupret, J.O. Klein, R. Renuaud, On chip vision system architecture using a CMOS retina, in Intelligent Vehicles Symposium, (University of Parnia), pp. 206–211Google Scholar
  7. 7.
    A. Gamal, “Trends in CMOS image sensor technology and design”. IEDM Tech. Digest, pp. 805-808, 2002.Google Scholar
  8. 8.
    J. Janesick, Dueling detectors, CCD or CMOS oemagazine February 2002, 31 February 2002, SPIE Newsroom. doi: 10.1117/2.5200202.0007  Google Scholar
  9. 9.
    A. Moini, Vision chip or seeing silicon. Center high performance integrated technologies and systems, University of Adelaide, Adelaide, Australia, Technical Report, March 1997Google Scholar
  10. 10.
    S. Chen, A. Bermak, F. Boussaid, A compact reconfigurable counter memory for spiking pixels. IEEE Electron Device Lett. 27(4), 255–257 (2006)CrossRefADSGoogle Scholar
  11. 11.
    P.L. Vora, J.E. Farrell, J.D. Tietz, D.H. Brainard, Image capture: simulation of sensor responses from hyper-spectral images. IEEE Trans. Image Process. 10(2), 307–316 (2001)CrossRefADSGoogle Scholar
  12. 12.
    P. Dudek, P.J. Hicks, A general-purpose processor-per-pixel analog SIMD vision chip. IEEE Trans. Circuits Syst. I Regul. Pap. 52(1), 15–20 (2005)CrossRefGoogle Scholar
  13. 13.
    I. Scherback, O. Yadid-Pecht, Photo-response analysis and pixel shape optimization for CMOS active pixel sensors. IEEE Trans. Electron Devices 50(1), 12–17 (2003)CrossRefADSGoogle Scholar
  14. 14.
    A. Bermak, A. Kitchen, A novel adaptive logarithmic digital pixel sensor. IEEE Photonics Technol. Lett. 18(20), 2147–2149 (2006)CrossRefADSGoogle Scholar
  15. 15.
    JM. Rabay, AP. Chadrakasan, B. Nikoli, Digital integrated circuits, in Charge Coupled CMOS and Hybrid Detector Arrays, ed. by T.J. Cumingham, C. Wrigley, B. Honcock (Pearson Pub. Janesick, SPIE San Diego, 2003) An Enhanced-Focal Plane Arrays for Space telescope Aug 2003, paper #5167-1Google Scholar
  16. 16.
    X. Wang, W. Wong, R. Horsney, A high dynamic range CMOS image sensor with in-pixel light-to-frequency conversion. IEEE Trans. Electron Devices 53(12), 2988–2992 (2006)CrossRefADSGoogle Scholar
  17. 17.
    O. Yadid-Petch, R. Ginosar, Y.S. Daimond, A random access photodiode array for intelligent image capture. IEEE Trans. Electron Devices 38, 1772–1780 (1991)CrossRefADSGoogle Scholar
  18. 18.
    A. Tangel, K. Kyusun, The CMOS inverter as a comparator in ADC design, in Analog Integrated Circuits and Signal Processing, (Kluwer Academic Publishers, Netherlands, 2004), pp. 47–55Google Scholar
  19. 19.
    D. Litwiler, CCD Vs CMOS, facts and fiction. Reprint from January 2001 issue of Photonics Spectra, (Laurin Publishing Co Inc)Google Scholar
  20. 20.
    S. Kagami, T. Komuro, M. Ishikawa, A high-speed vision system with in-pixel programmable ADCs and PEs for real-time visualsensing, in 8th IEEE International Workshop on Advance Motion Controls, (Kawaski, Japan, 2004), pp. 439–443Google Scholar
  21. 21.
    E.R. Fossum, CMOS image sensors: electronic camera- on chip. IEEE Trans. Electron Devices 44, 1689–1698 (1997)CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of India 2016

Authors and Affiliations

  • Y. V. Chavan
    • 1
    Email author
  • D. K. Mishra
    • 2
  • D. S. Bormane
    • 1
  • A. D. Shaligram
    • 3
  1. 1.Rajarshi Shahu College of EngineeringTathawade, PuneIndia
  2. 2.SGSITSIndoreIndia
  3. 3.Department of Electronic scienceUniversity of PunePuneIndia

Personalised recommendations