Journal of Optics

, Volume 44, Issue 1, pp 1–6 | Cite as

Optical properties of layers of symmetric molecular nanofilms

  • Igor J. Šetrajčić
  • Dragana Rodić
  • Stevan Armaković
  • Jovan P. Šetrajčić
Research Article


The changes of optical properties under boundary presence in molecular crystal nanofilm were theoretically investigated in this work. The dispersion law and states of excitons as well as their space distribution along boundary direction have been determined using adjusted Green’s function method and also by combined analytical and numerical calculations. We study the basic micro and macroscopic physical characteristics of symmetric ultrathin molecular crystalline films and one can see that essential optical properties of these systems arise with perturbation conditions, which appear at their surface layers. On the basis of real and imaginary part of relative permittivity, the absorption, refraction, reflection and transparency indices were determined, and the influences of boundary parameters on occurrence of a very selective and strictly discrete absorption, refraction and transparency were analyzed. What we have found particularly interesting is the significant percentage of reflected and transparent electromagnetic IR radiation in the nanofilm, although bulk samples of the same crystallographic structure are complete absorbers of this spectrum.


Thin film Excitons Permittivity Absorption Refraction Reflection Transparency 



This paper was partly financed by the Ministry of Education, Sciences and Technological Development of the Republic of Serbia (Grand Nos. ON-171039 and TR-34019) and the Ministry of Science and Technology of the Republic of Srpska as well as and the Provincial Secretariat for Science and Technological Development of AP Vojvodina (Grant 114-451-2048).


  1. 1.
    Microelectronic Materials and Processes, Ed. R. A. Levy (Kluwer Academic, Dordrecht, 1989; Ret. 2008)Google Scholar
  2. 2.
    M. Prutton, Introduction to Surface Physics (Clarendon Press, Oxford, 1995)Google Scholar
  3. 3.
    J.P. Šetrajčić, B. Markoski, D. Rodić, S.S. Pelemiš, S.M. Vučenović, B. Škipina, D.L.J. Mirjanić, Absorption features of symmetric molecular nanofilms. Nanosci. Nanotechnol. Lett. 5, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Skipina, D.L.J. Mirjanic, S.M. Vucenovic, J.P. Setrajcic, I.J. Setrajcic, A.J. Setrajcic-Tomic, S.S. Pelemis, B. Markoski, Selective IR absorption in molecular nanofilms. Opt. Mater. 33, 1578 (2011)CrossRefADSGoogle Scholar
  5. 5.
    S.M. Vucenovic, J.P. Setrajcic, B. Markoski, D.L.J. Mirjanic, S.S. Pelemis, B. Skipina, Changes in optical properties of molecular nanostructures. Acta Phys. Pol. A 117, 764 (2010)Google Scholar
  6. 6.
    M. C. Tringides, M. Jatochawski, E. Bauer, Quantum size effects in metallic nanostructures, physics today, 50 (2007)Google Scholar
  7. 7.
    B. Markoski, J. P. Šetrajčić, M. Petrevska, S. M. Vučenović, Permittivity in perturbed molecular nanofilms, Int. J. Mod. Phys. (2012) B 26(15), 1250078-1-1250078-8, doi:  10.1142/s0217979212500786
  8. 8.
    V.M. Agranovich, V.L. Ginzburg, Crystaloptics with space dispersion and theory of excitons (Nauka, Moscow, 1979)Google Scholar
  9. 9.
    J. P. Šetrajčić, Exact microtheoretical approach to calculation of optical properties of ultralow dimensional crystals, ARXIV, eprint arXiv:1004.2387 (04/2010)Google Scholar
  10. 10.
    S.G. Davison, M. Steslicka, Basic Theory of Surface States (Clarendon Press, Oxford, 1996)Google Scholar
  11. 11.
    M.G. Cottam, D.R. Tilley, Introduction to Surface and Superlattice Excitations (University Press, Cambridge, 1989)CrossRefGoogle Scholar
  12. 12.
    G. Mahan, Many Particle Physics (Plenum Press, New York, 1990)CrossRefGoogle Scholar
  13. 13.
    I.E. Dzialoshinski, L.P. Pitaevski, Zh.eksper.teor. Fiz. 36, 1977 (1959)Google Scholar
  14. 14.
    Y.Y. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001)Google Scholar
  15. 15.
    J.M. Ziman, Principles of the Theory of Solids (University Press, Cambridge, 1972), pp. 255–266CrossRefGoogle Scholar
  16. 16.
    A.B.. Djurišić, T. Fritz, K. Leo, Modeling the optical constants of organic thin films: application to 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). Opt. Commun. 183, 123 (2000)Google Scholar
  17. 17.
    I.D. Vragovic, J.P. Setrajcic, R. Scholz, Quantum size effects in the optical properties of organic superlattices containing 3, 4, 9, 10 perylene tetracarboxylic dianhydride (PTCDA). Eur. Phys. J. B. 66, 185 (2008)CrossRefADSGoogle Scholar
  18. 18.
    C. Hippius, I.H.M. van Stokkum, M. Gsanger, M.M. Groeneveld, R.M. Williams, F. Wurthner, Sequential FRET processes in calix[4]arene-linked orange-red-green perylene bisimide Dye zigzag arrays. J. Phys. Chem. C 112, 2476 (2008)CrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2015

Authors and Affiliations

  • Igor J. Šetrajčić
    • 1
  • Dragana Rodić
    • 1
  • Stevan Armaković
    • 1
  • Jovan P. Šetrajčić
    • 1
  1. 1.Department of PhysicsUniversity of Novi Sad, Faculty of SciencesNovi SadSerbia

Personalised recommendations