Journal of Optics

, Volume 42, Issue 1, pp 8–18 | Cite as

Single cell spectrally opposed responses: opponent colours or complementary colours?

  • Ralph W. PridmoreEmail author
Research Article


In the 1950s De Valois and colleagues, followed by other researchers, discovered spectrally opposed single cells in the primate LGN. They called them Red-Green and Yellow-Blue opponent colour cells, interpreting them as the biological implementation of Hering’s opponent colours theory. By the 1990s, it became increasingly clear the growing data on such cells did not match Hering’s unique hues Red-Green, Yellow-Blue. Yet these cells today remain misleadingly described by opponent-colour or similar various terms, with no agreed best term. This paper reviews much of the data to show spectrally opposed responses in primate retina, LGN, and striate cortex are complementary colours of three types: Blue-Yellow, Red-Cyan, and (less often) Green-Magenta. Such cells may be termed ‘complementary colour cells’ as a generic category, and further specified by the respective hue pair, e.g. Red-Cyan. (In psychophysics, ‘complementary colours’ refers to a pair of colour stimuli that admix white.) The difference between opponent colours and complementary colours is more than semantic: it concerns colour constancy, which in theory is aided by complementary colour cells.


Complementary colours Opponent colours Opposed response Opponent response Single cells 



I thank Dr. Bevil Conway, Wellesley College, Massachusetts, USA, for advice on many physiological aspects of the manuscript.


  1. 1.
    G. Svaetichin, Spectral response curves from single cones. Acta. Physiol. Scand. 39(Suppl. 134), 19–46 (1956)Google Scholar
  2. 2.
    G. Svaetichin, E.F. MacNichol Jr., Retinal mechanisms of chromatic and achromatic vision. Ann. N.Y. Acad. Sci. 74, 385–404 (1958)ADSCrossRefGoogle Scholar
  3. 3.
    E. Hering, Zur Lehre vom Lichtsinne (Carl Gerold’s Sohn, Wien, 1878). A theory of the light senseGoogle Scholar
  4. 4.
    D. Jameson, L.M. Hurvich, Some quantitative aspects of an opponent colors theory. I. Chromatic responses and spectral saturation. J. Opt. Soc. Am. 45, 546–552 (1955)ADSCrossRefGoogle Scholar
  5. 5.
    L.M. Hurvich, D. Jameson, Some quantitative aspects of an opponent colors theory. II. Brightness, saturation and hue in normal and dichromatic vision. J. Opt. Soc. Am. 45, 602–616 (1955)ADSCrossRefGoogle Scholar
  6. 6.
    R.L. De Valois, C.J. Smith, S.T. Kital, A.J. Karoly, Response of single cells in monkey LGN to monochromatic light. Science 127, 238–239 (1958)ADSCrossRefGoogle Scholar
  7. 7.
    T.N. Wiesel, D.H. Hubel, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966)Google Scholar
  8. 8.
    H.G. Wagner, E.F. MacNichol Jr., M.L. Wolbarsht, Opponent color responses in retinal ganglion cells. Science 13, 1314 (1960)ADSCrossRefGoogle Scholar
  9. 9.
    K.I. Naka, W.A.H. Rushton, S-potentials from colour units in the retina of fish (cyprinidae). J. Physiol(London) 185, 536–555 (1966)Google Scholar
  10. 10.
    N.W. Daw, Goldfish retina: organisation for simultaneous color contrast. Science 158, 942–946 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    A.L. Byzov, Y.A. Trifonov, The response to electrical stimulation of horizontal cells in the carp retina. Vis. Res. 8, 817–822 (1968)CrossRefGoogle Scholar
  12. 12.
    P. Gouras, E. Zrenner, Color coding in the primate retina. Vis. Res. 21, 1591–1598 (1981)CrossRefGoogle Scholar
  13. 13.
    K. Fukurotani, Color information coding of horizontal-cell responses in fish retina. Color. Res. Appl. 7, 146–148 (1982)CrossRefGoogle Scholar
  14. 14.
    J.-I. Toyoda, M. Fujimoto, Analysis of neural mechanisms mediating the effect of horizontal cell polarization. Vis. Res. 23, 1143–1150 (1983)CrossRefGoogle Scholar
  15. 15.
    A.M. Derrington, J. Krauskopf, P. Lennie, Chromatic mechanisms in the lateral geniculate nucleus of macaque. J. Physiol(London) 357, 241–265 (1984)Google Scholar
  16. 16.
    T.E. Ogden, G.G. Mascetti, R. Pierantoni, The outer horizontal cell of the frog retina: morphology, receptor input, and function. Invest. Ophthalmol. Vis. Sci. 26, 643–656 (1985)Google Scholar
  17. 17.
    V.I. Govardoskii, A.L. Byzov, L.V. Zueva, N.A. Polisczuk, E.A. Baburina, Spectral characteristics of photoreceptors and horizontal cells in the retina of the Siberian sturgeon Acipenser baeri brandt. Vis. Res. 27, 179–189 (1991)Google Scholar
  18. 18.
    R.C. Reid, R.M. Shapley, Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716–718 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    M.J.M. Lankheet, P. Lennie, J. Krauskopf, Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque. Vis. Neurosci. 15, 37–46 (1998)Google Scholar
  20. 20.
    C.R. Michael, Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41, 572–588 (1978)Google Scholar
  21. 21.
    M.S. Livingstone, D.H. Hubel, Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984)Google Scholar
  22. 22.
    P. Lennie, J. Krauskopf, G. Sclar, Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990)Google Scholar
  23. 23.
    B. Conway, Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 21, 2768–2783 (2001)Google Scholar
  24. 24.
    F. Ratliff, On the psychophysiological bases of universal color terms. Proc. Am. Philos. Soc. 120, 311–330 (1976)Google Scholar
  25. 25.
    S.L. Guth, Model for color vision and light adaptation. J. Opt. Soc. Am. A. 8, 976–993 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    E. Kaplan, B.B. Lee, R.M. Shapley, New views of primate retinal function. Prog. Retin. Res. 9, 273–336 (1990)CrossRefGoogle Scholar
  27. 27.
    R.L. De Valois, K.K. De Valois, A multi-stage color model. Vis. Res. 33, 1053–1065 (1993)CrossRefGoogle Scholar
  28. 28.
    K. Jameson, R.G. D’Andrade, It’s not really red, green, yellow, blue: an inquiry into perceptual color space, in Color categories in thought and language, ed. by C.L. Hardin, L. Maffi (University of Cambridge Press, Cambridge, 1997), pp. 295–319CrossRefGoogle Scholar
  29. 29.
    Gouras P. Color Vision, in Webvision, Organisation of Retina And Visual System, Kolb H, Fernandez E, Nelson R, eds, 1999;
  30. 30.
    M.A. Webster, E. Miyahara, G. Malkoc, V.E. Raker, Variations in normal color vision. II. Unique hues. J. Opt. Soc. Am. 17, 1545–1555 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    A. Valberg, Unique hues: an old problem for a new generation. Vis Research 41, 1645–1657 (2001)CrossRefGoogle Scholar
  32. 32.
    B.R. Conway, M.S. Livingstone, A different point of hue. Proc. Natl. Acad. Sci. USA 102, 10761–10762 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    J. Krauskopf, D.R. Williams, D.W. Heeley, Cardinal directions of color space. Vis. Res. 22, 1123–1131 (1982)CrossRefGoogle Scholar
  34. 34.
    S.M. Wuerger, P. Atkinson, S. Cropper, The cone inputs to the unique-hue mechanisms. Vis. Res. 45, 3210–3223 (2005)CrossRefGoogle Scholar
  35. 35.
    Newton I. Opticks. London: Walford B and Walford S, printers to the Royal Society; 1704.Google Scholar
  36. 36.
    Maxwell JC. Experiments on colour, as perceived by the eye, with remarks on colour blindness. Philos Trans R Soc Edinburgh 1854–1855;21(Part 2):275–298.Google Scholar
  37. 37.
    M.E. Chevreul, De la loi du contraste simultane des couleurs (Pitois-Levraux, Paris, 1839)Google Scholar
  38. 38.
    G.A. Agoston, Color theory and application in art and design (Springer, London, 1987)Google Scholar
  39. 39.
    B. Berlin, P. Kay, Basic color terms: Their universality and evolution (University of California Press, Berkeley, 1969)Google Scholar
  40. 40.
    R.G. Kuehni, Variability in unique hue selection: a surprising phenomenon. Color. Res. Appl. 29, 158–162 (2004)CrossRefGoogle Scholar
  41. 41.
    R.W. Pridmore, Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues. Vis. Res. 39, 3892–3908 (1999)CrossRefGoogle Scholar
  42. 42.
    E.H. Land, J.J. McCann, Lightness and retinex theory. J. Optical Soc. Am. 61, 1–11 (1971)ADSCrossRefGoogle Scholar
  43. 43.
    O.D. Creutzfeldt, J.M. Crook, S. Kastner, C.Y. Li, X. Pei, The neurophysiological correlates of colour and brightness contrast in lateral geniculate neurons. I. Population analysis. Exp. Brain Res. 87, 3–21 (1991)CrossRefGoogle Scholar
  44. 44.
    S. Kastner, J.M. Crook, X. Pei, O.D. Creutzfeldt, Neurophysiological correlates of colour induction on white surfaces. Eur. J. Neurosci. 4, 1079–1086 (1992)CrossRefGoogle Scholar
  45. 45.
    R.L. De Valois, Color vision mechanisms in the monkey. J. Gen. Physiol. 43, 115–128 (1960)CrossRefGoogle Scholar
  46. 46.
    D.A. Baylor, B.J. Nunn, J.L. Schnapf, Spectral sensitivity of cones of the monkey Macaca fascicularis. J. Physiol. 390, 145–160 (1987)Google Scholar
  47. 47.
    R.L. De Valois, H.C. Morgan, M.C. Polson, W.R. Mead, E.M. Hull, Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. Vision Res 14, 53–67 (1974)CrossRefGoogle Scholar
  48. 48.
    J.H. Sandell, C.G. Gross, M.H. Bornstein, Color categories in macaques. J. Comp. Physiol. Psychol. 93, 626–635 (1979)CrossRefGoogle Scholar
  49. 49.
    R.C. Reid, R.M. Shapley, Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J. Neurosci. 22, 6158–6175 (2002)Google Scholar
  50. 50.
    E.N. Johnson, M.J. Hawken, R. Shapley, Cone inputs in macaque primary visual cortex. J. Neurophys. 91, 2501–2514 (2004)CrossRefGoogle Scholar
  51. 51.
    G.D. Horwitz, E.J. Chichilnisky, T.D. Albright, Cone inputs to simple and complex cells in V1 of awake macaque. J. Neurophys. 97, 3070–3081 (2007)CrossRefGoogle Scholar
  52. 52.
    S.G. Solomon, P. Lennie, Chromatic gain controls in visual cortical neurons. J. Neurosci. 25, 4779–4792 (2005)CrossRefGoogle Scholar
  53. 53.
    B. Conway, D. Hubel, M.S. Livingstone, Color contrast in macaque V1. Cereb. Cortex 12, 915–925 (2002)CrossRefGoogle Scholar
  54. 54.
    B.R. Conway, M.S. Livingstone, Spatial and temporal properties of cone signals in alert Macaque primary visual cortex. J. Neuroscience 26, 10826–10846 (2006)CrossRefGoogle Scholar
  55. 55.
    C. Tailby, S.G. Solomon, N.T. Dhruv, P. Lennie, Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque. J. Neurosci. 28, 1131–1139 (2008)CrossRefGoogle Scholar
  56. 56.
    J.D. Victor, E.M. Blessing, J.D. Forte, P. Buzas, P.R. Martin, Response variability of marmoset parvocellular neurons. J. Physiol. 579, 29–51 (2007)CrossRefGoogle Scholar
  57. 57.
    P.A. Dufort, C.J. Lumsden, Color categorization and color constancy in a neural network model of V4. Biol. Cybern. 65, 293–303 (1991)CrossRefGoogle Scholar
  58. 58.
    K.R. Gegenfurtner, Cortical mechanisms of colour vision. Nat. Neurosci. 4, 563–572 (2003)CrossRefGoogle Scholar
  59. 59.
    R.W. Pridmore, Theory of corresponding colors as complementary sets. Color. Res. Appl. 30, 371–381 (2005)CrossRefGoogle Scholar
  60. 60.
    R.W. Pridmore, Color constancy from invariant wavelength ratios: I. The empirical spectral mechanism. Color. Res. Appl. 33, 238–249 (2008)CrossRefGoogle Scholar
  61. 61.
    R.W. Pridmore, Complementary colors: the structure of wavelength discrimination, uniform hue, spectral sensitivity, saturation, chromatic induction and adaptation. Color. Res. Appl. 34, 233–252 (2009)CrossRefGoogle Scholar
  62. 62.
    M. Pottek, K. Schultz, R. Weiler, Effects of nitric oxide on the horizontal cell network and dopamine release in the carp retina. Vis. Res. 37, 1091–1102 (1997)CrossRefGoogle Scholar
  63. 63.
    G. Twig, H. Levy, I. Perlman, Color opponency in horizontal cells of the vertebrate retina. Prog. Retin. Eye Res. 22, 31–68 (2003). Review articleCrossRefGoogle Scholar
  64. 64.
    K.R. Gegenfurtner, J. Rieger, Sensory and cognitive contributions of color to the recognition of natural scenes. Curr. Biol. 10, 805–808 (2000)CrossRefGoogle Scholar
  65. 65.
    F.A. Wichmann, L.T. Sharpe, K.R. Gegenfurtner, The contributions of color to recognition memory for natural scenes. J. Exp. Pyschol. Learn. Mem. Cognit. 28, 509–520 (2002)CrossRefGoogle Scholar
  66. 66.
    M.H. Brill, G. West, Contributions to the theory of invariance of color under the condition of varying illumination. J. Math. Biol. 11, 337–350 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    L.T. Maloney, B. Wandell, Color constancy: a method for recovering surface spectral reflectance. J. Opt. Soc. Am. A. 3, 29–33 (1986)ADSCrossRefGoogle Scholar
  68. 68.
    M.H. Brill, Color constancy and color rendering: concomitant engineering of illuminants and reflectances. Color. Res. Appl. 13, 174–180 (1988)CrossRefGoogle Scholar
  69. 69.
    G.D. Finlayson, M.S. Drew, B.V. Funt, Color constancy: generalized diagonal transforms suffice. J. Opt. Soc. Am. A. 11, 3011–3020 (1994)ADSCrossRefGoogle Scholar
  70. 70.
    Kries J von, Chromatic adaptation. (Festschrift der Albrecht-Ludwig Universtat, 1902)Google Scholar
  71. 71.
    S.M. Courtney, L.H. Finkel, G. Buchsbaum, Network simulations of retinal and cortical contributions to color constancy. Vis. Res. 35, 413–434 (1994)CrossRefGoogle Scholar
  72. 72.
    D.H. Foster, S.M.C. Nascimento, Relational color constancy from invariant cone-excitation ratios. Proc. R. Soc. Lond. B. Biol. Sci. 257, 115–121 (1994)ADSCrossRefGoogle Scholar
  73. 73.
    D.H. Hubel, Eye, Brain and Vision, 2nd edn. (Scientific American Library, New York, 1995)Google Scholar
  74. 74.
    K. Moutoussis, S. Zeki, Responses of spectrally selective cells in macaque area V2 to wavelengths and colors. J. Neurophys. 87, 2104–2112 (2002)Google Scholar
  75. 75.
    T. Wachtler, T.J. Sejnowski, T.D. Albright, Representation of color stimuli in awake macaque primary visual cortex. Neuron 37, 681–691 (2003)CrossRefGoogle Scholar
  76. 76.
    Buchsbaum G, Tailor DR. The elementary structure of natural color images and its possible neurophysiological correlates [Abstract]. Journal of Vision 1(3) (2001): doi: 10.1167/1.3.64
  77. 77.
    J. Larimer, D.H. Krantz, C.M. Cicerone, Opponent-process additivity. I. Red/green equilibria. Vis. Res. 14, 1127–1140 (1974)CrossRefGoogle Scholar
  78. 78.
    J. Larimer, D.H. Krantz, C.M. Cicerone, Opponent-process additivity. II. Yellow/blue equilibria. Vis. Res. 18, 723–731 (1975)CrossRefGoogle Scholar
  79. 79.
    R.W. Pridmore, Complementary colors theory of color vision: physiology, color mixture, color constancy, and color perception. Color. Res. Appl. 36, 394–412 (2011)CrossRefGoogle Scholar

Copyright information

© Optical Society of India 2012

Authors and Affiliations

  1. 1.Center for Cognitive ScienceMacquarie UniversitySydneyAustralia

Personalised recommendations