Advertisement

Journal of Optics

, Volume 39, Issue 2, pp 90–101 | Cite as

Diffraction Lloyd mirror interferometer

  • Raj KumarEmail author
Research Article

Abstract

Present work describes the principle and realization of diffraction Lloyd’s mirror interferometer. In this new system light diffracted from an aperture is divided into two wavefronts which are again superimposed on each other with the help of a Lloyd’s mirror. This setup generates two beam interference fringes analogous to that the well known Lloyd’s mirror interferometer. It has been shown that these interference fringes can be produced with vertical as well as horizontal polarized incident light. Experimental test results on phase objects using this system are also presented. Further, applications of this interferometer are discussed in various emerging fields.

Key words

Interferometry Diffraction Boundary diffraction wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malacara-Hernández, D., Servín, M., Malacara, Z.: Interferogram Analysis for Optical Testing. Marcel Dekker, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Hariharan, P.: Optical interferometry. Academic Press, San Diego (2003)Google Scholar
  3. 3.
    A.A. Hamza, M.A. Mabrouk, W.A. Ramadan, A.M. Emara, “Refractive index and thickness determination of thin-films using Lloyd’s interferometer” Opt. Commun. 225, 341–348 (2003)CrossRefADSGoogle Scholar
  4. 4.
    R. Kumar, D.P. Chhachhia, A.K. Aggarwal, “Retrieval of infinite-fringe mode information from beam folding interferometer for direct phase visualization” J. Opt. A: Pure Appl. Opt. 8, 747–751 (2006)CrossRefADSGoogle Scholar
  5. 5.
    R. Kumar, A.K. Aggarwal, “Interferometric moiré pattern encoded security holograms with concealed phase pattern” Opt. Commun. 279, 120–123 (2007)CrossRefADSGoogle Scholar
  6. 6.
    J. Boor, N. Geyer, U. Gösele, V. Schmidt, “Three-beam interference lithography: upgrading Lloyd’s interferometer for single exposure hexagonal patterning” Opt. Lett. 34, 1783–1785 (2009)CrossRefADSGoogle Scholar
  7. 7.
    R. Kumar, S.K. Kaura, D.P. Chhachhia, A.K. Aggarwal, “Direct visualization of Young’s boundary diffraction wave” Opt. Commun. 276, 54–57 (2007)CrossRefADSGoogle Scholar
  8. 8.
    M. Born, E. Wolf: Principles of Optics. Pergamon, Oxford (1993)Google Scholar
  9. 9.
    P.H. Langenbeck, “Lloyd Interferometer Applied to Flatness Testing” Appl. Opt. 6, 1707–1714 (1967)CrossRefADSGoogle Scholar
  10. 10.
    R.N. Wolfe, F.C. Eisen, “Irradiance distribution in a Lloyd mirror interference pattern” J. Opt. Soc. Am. 38, 706–711 (1948)CrossRefADSGoogle Scholar
  11. 11.
    R. Kumar, D.P. Chhachhia, A.K. Aggarwal, “Folding mirror schlieren diffraction interferometer” Appl. Opt. 45, 6708–6711 (2006)CrossRefADSGoogle Scholar
  12. 12.
    R. Kumar, S.K. Kaura, A.K. Sharma, D.P. Chhachhia and A.K. Aggarwal, “Knife-edge diffraction pattern as an interference phenomenon: an experimental reality” Opt. Laser Tech. 39, 256–261 (2007)CrossRefADSGoogle Scholar
  13. 13.
    G.S. Settles: Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Springer, Berlin (2001)zbMATHGoogle Scholar
  14. 14.
    R. Kumar, “Structure of boundary diffraction wave revisited” Appl. Phys. B -Lasers Opt. 90, 379–382 (2008)CrossRefADSGoogle Scholar
  15. 15.
    R. G. Kouyoumjian, P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface” Proc. IEEE 62, 1448–1461 (1974)CrossRefADSGoogle Scholar
  16. 16.
    A. Rubinowicz, “Thomas Young and the theory of diffraction” Nature 180, 160–162Google Scholar
  17. 17.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays” Nature 391, 667–669 (1998)CrossRefADSGoogle Scholar
  18. 18.
    C. Genet, T.W. Ebbesen, “Light in tiny holes” Nature 445, 39–46 (2007)CrossRefADSGoogle Scholar
  19. 19.
    J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays” Rep. Prog. Phys. 72, 064401 (2009)CrossRefADSGoogle Scholar
  20. 20.
    T. Young, “The Bakerian lecture: On the theory of light and colors” Phil. Trans. R. Soc. London 20, 12–48 (1802)Google Scholar
  21. 21.
    S.V. Kukhlevsky, “Enhanced transmission of light through subwavelength nanoapertures by far-field multiplebeam interference” Phys. Rev. A 78, 023826 (2008)Google Scholar
  22. 22.
    R. Kumar, “Extraordinary optical transmission by interference of diffracted wavelets” Opt. Appl. 40, In Press (2010)Google Scholar

Copyright information

© Optical Society of India 2009

Authors and Affiliations

  1. 1.Central Scientific Instruments OrganisationChandigarhIndia

Personalised recommendations