Advertisement

Proceedings of the Zoological Society

, Volume 72, Issue 1, pp 25–31 | Cite as

Black Tea (Camellia sinensis) Extract Induced Changes in Blood and Liver Parameters on Pregnant and Lactating Experimental Albino Rats

  • Avijit Dey
  • Antony Gomes
  • Subir Chandra DasguptaEmail author
Research Article

Abstract

This study was to evaluate the changes in blood and liver parameters caused by oral dose of black tea extract (BTE) in experimental albino rats throughout pregnancy and lactation periods. Pregnant female Wister albino rats were chosen for this study. Group 1 was control group treated with saline. Group 2 and Group 3 were pregnant female rats treated with 50 and 100 mg BTE/kg/day respectively throughout pregnancy and lactation periods. All three groups of rats were provided with food and drinking water ad libitum. Animals were examined through their hematological profile, SEM of RBC and liver function test. BTE (100 mg/kg/day) produced significant alterations in hemoglobin concentration, total RBC and WBC count compared to control groups. BTE (100 mg/kg/day) also induced significant changes in the histology of liver and serum enzymes for liver function test compared to control groups. This study confirmed that BTE altered the parameters of blood and liver in pregnant and lactating experimental albino rats.

Keywords

Albino rat Black tea extract Camellia sinensis Pregnancy Lactation period Blood parameters Liver function test 

Notes

Acknowledgements

The authors like to thank National Tea Research Foundation, Tea Board, India (Code No. NTRF:164/2014; Ref No. NTRF:17(305)/2013/4423 dated 11th March, 2014) for financial support to carry out the research work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Alemdaroglu, N.C., U. Dietz, S. Wolffram, H. Spahn-Langguth, and P. Langguth. 2008. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: Potential risk of diminished folic acid bioavailability. Biopharmaceutics & Drug Disposition 29 (6): 335–348.CrossRefGoogle Scholar
  2. Arab, L., W. Liu, and D. Elashoff. 2009. Green and black tea consumption and risk of stroke: A meta-analysis. Stroke 40 (5): 1786–1792.CrossRefPubMedGoogle Scholar
  3. Blot, W.J., W.H. Chow, and J.K. McLaughlin. 1997. Tea and cancer: A review of the epidemiological evidence. European Journal of Cancer Prevention 5 (6): 425–438.Google Scholar
  4. Buys, A.V., M.-J.V. Rooy, P. Soma, D.V. Papendorp, B. Lipinski, and E. Pretorius. 2013. Changes in red blood cell membrane structure in type 2 diabetes: A scanning electron and atomic force microscopy study. Cardiovascular Diabetology 12: 25.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dacie, J.V., and S.M. Lewis. 1968. Practical hematology, 4th ed, 37. London: J. & A, Churchill.Google Scholar
  6. Datta, P., A. Sarkar, A.K. Biswas, and A. Gomes. 2012. Anti arthritic activity of aqueous extract of Indian black tea in experimental and clinical study. Oriental Pharmacy and Experimental Medicine 12 (4): 265–271.CrossRefGoogle Scholar
  7. Devine, A., J.M. Hodgson, I.M. Dick, and R.L. Prince. 2007. Tea drinking is associated with benefits on bone density in older women. The American Journal of Clinical Nutrition 86 (4): 1243–1247.CrossRefPubMedGoogle Scholar
  8. Disler, P.B., S.R. Lynch, R.W. Charlton, J.D. Torrance, T.H. Bothwell, R.B. Walker, and F. Mayet. 1975. The effect of tea on iron absorption. Gut 16 (3): 193–200.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fan, F.S. 2016. Iron deficiency anemia due to excessive green tea drinking. Clinical Case Reports 4 (11): 1053–1056.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gardner, E.J., C.H. Ruxton, and A.R. Leeds. 2006. Black tea—Helpful or harmful? A review of the evidence. European Journal of Clinical Nutrition 61 (1): 3–18.CrossRefPubMedGoogle Scholar
  11. Gomes, A., P. Datta, A. Sarkar, S.C. Dasgupta, and A. Gomes. 2014. Black tea (Camellia sinensis) extract as an immunomodulator against immunocompetent and immunodeficient experimental rodents. Oriental Pharmacy and Experimental Medicine 14 (3): 37–45.CrossRefGoogle Scholar
  12. Gupta, V., P. Bansal, J. Niazi, and S. Kumar. 2010. Phytochemistry and pharmacology of Camellia sinensis—A review. Annals of Biological Research. 1 (2): 91–102.Google Scholar
  13. Hallberg, L., and L. Rossander. 1982. Effect of different drinks on the absorption of non-heme iron from composite meals. Human Nutrition-Applied Nutrition 36 (2): 116–123.PubMedGoogle Scholar
  14. Henderson, L., J. Gregory, G. Swan, and G. Britain. 2002. The national diet and nutrition. Survey: Adult aged 19–64 years. London: FSA.Google Scholar
  15. Hodgson, J.M. 2008. Tea flavonoids and cardiovascular disease. Asia Pacific Journal of Clinical Nutrition 17 (Suppl 1): 288–290.PubMedGoogle Scholar
  16. Hollman, P.C.H., A. Geelen, and D. Kromhout. 2010. Dietary flavonol intake may lower stroke risk in men and women. Journal of Nutrition 140 (3): 600–604.CrossRefPubMedGoogle Scholar
  17. International Committee for Standardization in Haematology. 1978. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard EP 6/2: 1977) and specifications for international haemiglobincyanide reference preparation (ICSH standard EP 6/3: 1977). Journal of Clinical Pathology 31 (2): 139–143.Google Scholar
  18. Isbrucker, R.A., J.A. Edwards, E. Wolz, A. Davidovich, and J. Bausch. 2006. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats. Food and Chemical Toxicology 44 (5): 651–661.CrossRefPubMedGoogle Scholar
  19. Kim, E.Y., S.K. Ham, M.K. Shigenaga, and O. Han. 2008. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. Journal of Nutrition 138 (9): 1647–1651.CrossRefPubMedGoogle Scholar
  20. Larsson, S.C., S. Männistö, M.J. Virtanen, J. Kontto, D. Albanes, and J. Virtamo. 2008. Coffee and tea consumption and risk of stroke subtypes in male smokers. Stroke 39 (6): 1681–1687.CrossRefPubMedGoogle Scholar
  21. Ma, Q., E.-Y. Kim, E.A. Lindsay, and O. Han. 2011. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal caco-2 cells. Journal of Food Science 76 (5): H143–H150.CrossRefPubMedPubMedCentralGoogle Scholar
  22. McKay, D.L., and J.B. Blumberg. 2002. The role of tea in human health: an update. Journal of American College of Nutrition 21 (1): 1–13.CrossRefGoogle Scholar
  23. Modder, W.W.D., and A.M.T. Amarakoon. 2002. Tea and health, 1–179. Talawakelle, Sri Lanka: Tea Research Institute.Google Scholar
  24. Mukherjee KL. 1990. Medical laboratory technology - Procedure manual for routine diagnostic tests, Vol 1, 240–250, New Delhi: Tata McGraw-Hill Publication.Google Scholar
  25. Navarro-Perán, E., J. Cabezas-Herrera, F. García-Cánovas, M.C. Durrant, R.N. Thorneley, and J.N. Rodríguez-López. 2005. The antifolate activity of tea catechins. Cancer Research 65 (6): 2059–2064.CrossRefPubMedGoogle Scholar
  26. Navarro-Perán, E., J. Cabezas-Herrera, L.S. Campo, and J.N. Rodríguez-López. 2007. Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate. Internatioal Journal of Biochemistry & Cell Biology 39 (12): 2215–2225.CrossRefGoogle Scholar
  27. Patel, S.S., S. Beer, D.L. Kearney, G. Phillips, and B.A. Carter. 2013. Green tea extract: A potential cause of acute liver failure. World Journal of Gastroenterology 19 (31): 5174–5177.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ruxton, C.H.S. 2008. Black tea and health. Nutrition Bulletin 33 (2): 91–101.CrossRefGoogle Scholar
  29. Stevens, T., A. Qadri, and N.N. Zein. 2005. Two patients with acute liver injury associated with use of the herbal weight-loss supplement Hydroxycut. Annals of Internal Medicine 142 (6): 477–478.CrossRefPubMedGoogle Scholar
  30. Tijburg, L.B.M., T. Mattern, J.D. Folts, U.M. Weisgerber, and M.B. Katan. 1997. Tea flavonoids and cardiovascular diseases: A review. Critical Reviews in Food Science and Nutrition 37 (8): 771–785.CrossRefPubMedGoogle Scholar
  31. Vermeer, M.A., T.P.J. Mulder, and H.O.F. Molhuizen. 2008. Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. Journal of Agricultural and Food Chemistry 56 (24): 12031–12036.CrossRefPubMedGoogle Scholar
  32. Wang, D., J. Meng, K. Xu, R. Xiao, M. Xu, Y. Liu, Y. Zhao, P. Yao, H. Yan, and L. Liu. 2012. Evaluation of oral subchronic toxicity of Pu-erh green tea (Camellia sinensis var. assamica) extract in Sprague Dawley rats. Journal of Ethnopharmacology 142 (3): 836–844.CrossRefPubMedGoogle Scholar
  33. Wang, Y., W. Li, J. Ning, R. Hong, and H. Wu. 2015. Major flavonoid constituents and short-term effects of Chun Mee tea in rats. Journal of Food and Drug Analysis. 23 (1): 93–98.CrossRefPubMedGoogle Scholar
  34. Zijp, I.M., O. Korver, and L.B.M. Tijburg. 2000. Effect of tea and other dietary factors on iron absorption. Critical Reviews in Food Science and Nutrition 40 (5): 371–398.CrossRefPubMedGoogle Scholar

Copyright information

© Zoological Society, Kolkata, India 2017

Authors and Affiliations

  • Avijit Dey
    • 1
  • Antony Gomes
    • 2
  • Subir Chandra Dasgupta
    • 1
    Email author
  1. 1.Department of ZoologyMaulana Azad CollegeKolkataIndia
  2. 2.Laboratory of Toxinology and Experimental Pharmacodynamics, Department of PhysiologyUniversity of CalcuttaKolkataIndia

Personalised recommendations