Advertisement

Proceedings of the Zoological Society

, Volume 70, Issue 1, pp 5–20 | Cite as

A Review on Reservoir System and Its Ecology in Indian Perspective

  • Moitreyee BanerjeeEmail author
  • Joyita Mukherjee
  • Santanu Ray
Review Article

Abstract

Rural populations often depend on small reservoirs for their water supply. These are not natural aquatic system but are designed to serve specific purposes and provide the means to utilize water in a variety of useful and efficient ways. Water from these sources is not only utilized for drinking purposes, but also for commercial and industrial use. Though reservoirs are constructed, they are considered as an intermediate between a river and a lake. Thus limnological characteristics of this hybrid system have been of great interest to ecologists and researchers. Several limnological attributes regarding water quality, plankton abundance, fish population are been discussed in this review article. Ecological studies on global and Indian perspective are the major highlight of this review. A few modeling approaches are also discussed which are commonly used globally to preserve and manage the pristine aquatic nature of this hybrid ecosystem.

Keywords

Plankton Environmental factors Modelling Limnology 

Notes

Acknowledgments

The authors would like to thank the Department of Zoology, Visva-Bharati University for the infrastructural support to carry out the work.

Compliance with Ethical Standards

Conflict of interests

The authors declare that there is no conflict of interests.

References

  1. Abbasi, S.A. 1991. Environmental impact of water resources projects. New Delhi: Discovery Publishing House.Google Scholar
  2. An, K.-G., and J.R. Jones. 2000. Factors regulating bluegreen dominance in a reservoir directly influenced by the Asian monsoon. Hydrobiologia 432: 37–48.CrossRefGoogle Scholar
  3. Anonymous. 1998. World Atlas and Industry Guide. International Journal of Hydropower and Dams, Aqua Media International Ltd., Surrey, UK.Google Scholar
  4. Antwi, L.A.K. 1990. Limno-chemistry of Volta Lake 25 years after its formation. Institute of Aquatic Biology Technical Report, 11.Google Scholar
  5. Arcifa, M.S., C.G. Froehlich, and S.M.F. Gianessella-Galvao. 1981. Circulation patterns and their influence on physico-chemical and biological conditions in eight reservoirs in Southern Brazil. Verhandlungen des Internationalen Verein Limnologie 21: 1054–1059.Google Scholar
  6. Armengol, J., J.-C. Garcia, M. Comerma, M. Romero, J. Dolz, and M. Roura. 1999. Longitudinal processes in canyon type reservoirs: The case of Sau (N.E. Spain). In Theoretical reservoir ecology and its application, ed. J.G. Tundisi, and M. Straskraba, 313–345. Leiden: Backhuys.Google Scholar
  7. Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams. 1998. Large-area hydrologic modeling and assessment: Part I. Model development. Journal of American Water Resource Association 34(1): 73–89.CrossRefGoogle Scholar
  8. Arruda, J.A. 1980. Some effects of suspended silts and clays on the feeding activity of Daphnia spp. from Tuttle Creek Reservoir. Dissertation. Kansas State University, Manhattan, Kansas, USA.Google Scholar
  9. Arruda, J.A., G.R. Marzolf, and R.T. Faulk. 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64(5): 1225–1235.CrossRefGoogle Scholar
  10. Avakyan, J., and V.B. Iakovleva. 1998. Status of global reservoirs: The position in the late twentieth century. Lake and Reservoir Research Management 3: 45–52.CrossRefGoogle Scholar
  11. Axelson, J. 1961. Zooplankton and impoundment of two lakes in Northern Sweden (Ransaren and Kultsjön). Institute of Freshwater Research: Drottningholm Report 42: 84–168.Google Scholar
  12. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of watercolumn microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  13. Banerjee, M., J. Mukherjee, A. Banerjee, M. Roy, G. Bamdopadhyay, and S. Ray. 2015. Impact of environmental factors in the water quality of Bakreswar reservoir, India. Computational Ecology and Software Accepted March 2015.Google Scholar
  14. Bauer, A., and K.D. Morrison. 2007. Water management and reservoirs in India and Sri Lanka. In The encyclopedia of the history of science, technology and medicine in North Western cultures, ed. Selin. H, 21–29. Germany: Springer.Google Scholar
  15. Baxter, R.M. 1977. Environmental effects of dams and impoundments. Annual Review on Ecology and Systematics 8: 255–383.CrossRefGoogle Scholar
  16. Bendorff, J., and F. Recknagel. 1982. Problems of application of ecological model SALMO to lakes and reservoirs having various trophic states. Ecological Modelling 17(2): 129–145.CrossRefGoogle Scholar
  17. Bera, A., M. Bhattacharya, B.C. Patra, and U.K. Sar. 2014. Ichthyofaunal diversity and water quality in the Kangsabati Reservoir, West Bengal, India. Advances in Zoology. doi: 10.1155/2014/674313.Google Scholar
  18. Bowen, J.D., and J.W. Hieronymous. 2003. A CE-QUAL-W2 model ofneuse estuary for total maximum daily load development. Journal of Water Resource and Planning Management 129: 283–294.CrossRefGoogle Scholar
  19. Branco, C.W.C., A. Rocha Maria-Isabel, G.F.S. Pinto, G.A. Gômara, and R. De Filippo. 2002. Limnological features of Funil Reservoir and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes and Reservoirs Research Management 7: 87–92.CrossRefGoogle Scholar
  20. Burgis, M.J., and P. Morris. 1987. The natural history of lakes. Cambridge: Cambridge University Press.Google Scholar
  21. Calijuri, M.C., A.C.A. Dos Santos, and S. Jati. 2002. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, S.P.—Brazil). Journal of Plankton Research 24: 617–634.CrossRefGoogle Scholar
  22. Campbell, C.E., K. Roy, and D. Copeman. 1998. Evaluation of factors related to increased zooplankton biomass and altered species composition following impoundment of a Newfoundland reservoir. Canadian Journal of Fisheries and Aquatic Sciences 55: 230–238.CrossRefGoogle Scholar
  23. Capon, S.J., L.E. Chambers, R. Mac Nally, R.J. Naiman, P. Davies, N. Marshall, J. Pittock, M. Reid, T. Capon, M. Douglas, J. Catford, D.S. Baldwin, M. Stewardson, J. Roberts, M. Parsons, and S.E. Williams. 2013. Riparian ecosystems in the 21st century: Hotspots for climate change adaptation? Ecosystems 16: 359–381.CrossRefGoogle Scholar
  24. Chalar, G. 1998. Sedimantacao e fluxo vertical de nutrientesemdoisreservatorios de distintosestadostroficos, (Reservatorios do Broa e Barra Bonita, SP). Tese de Duotorado, Escola de Engenharia de Sao Carlos, 151. Universidade de Sao Paulo, Sao Carlos.Google Scholar
  25. Chalar, G., and J.G. Tundisi. 1999. Main processes in the water column determined by Wind and Rainfall at Lobo (Broa) Reservoir. Implications for phosphorous cycling. In Theoretical reservoir ecology and its applications, ed. J.G. Tundisi, and M. Straskaba, 53–65. Leiden: Backhuys.Google Scholar
  26. Christensen, V., and D. Pauly. 1993. Trophic models of aquatic ecosystems. In ICLARM conference proceedings in international center for living resources management. Manila.Google Scholar
  27. Chrzanowski, T.H., R. Sterner, and J.J. Elser. 1995. Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth. Microbiology and Ecology 29: 221–230.CrossRefGoogle Scholar
  28. Chung, S.W., and J.K. Oh. 2006. Calibration of CE-QUAL-W2 for a monomictic reservoir in a monsoon climate area. Water Science and Technology 54: 29–37.PubMedCrossRefGoogle Scholar
  29. Cole, G.A. 1983. Textbook of limnology. Prospect Heights, Illinois: Waveland.Google Scholar
  30. Correll, D.L. 1998. The role of phosphorous in the eutrophication of receiving waters: A review. Journal of Environmental Quality 27: 261–266.CrossRefGoogle Scholar
  31. Cotner, J.B., and B.A. Biddanda. 2002. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121.CrossRefGoogle Scholar
  32. Coveney, M.F., and R.G. Wetzel. 1992. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures. Applied and Environmental Microbiology 58: 150–156.PubMedPubMedCentralGoogle Scholar
  33. Crame, J.D., and G.R. Marzolf. 1969. Selective predation on zooplankton by gizzard shad, Dorosomacepidianum. Transactions of the American Fisheries Society 99: 320–332.CrossRefGoogle Scholar
  34. Cuker, B.E. 1987. Field experiment on the influences of suspended clay and P on the plankton of a small lake. Limnology and Oceanography 32(4): 840–847.CrossRefGoogle Scholar
  35. Dantas, Ê.W., M.C. Bittencourt-Oliveirac, and A.N. Moura. 2012. Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds’ theory. Limnologica 42: 72–80.CrossRefGoogle Scholar
  36. Debele, B., R. Srinivasan, and J.-Y. Parlange. 2006. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modelling and Assessment 13: 135–153.CrossRefGoogle Scholar
  37. Deivanai, K., S. Arunprasath, M.K. Rajan, and S. Baskaran. 2004. Biodiversity of phytoplankton and zooplankton in relation to water quality parameters in a sewage polluted pond at Ellayirampannai, Virudhunagar District. In: The proceedings of national symposium on biodiversity resources management and sustainable use. Organized by the Center for Biodiversity and Forest studies, Madurai Kamaraj University, Madurai.Google Scholar
  38. Deliman, P.N., and J.A. Gerald. 2002. Application of the two-dimensional hydrothermal and water qualitymodel, CE-QUAL-W2, to the Chesapeake Bay–Conowingo Reservoir. Lake and Reservoir Management 18: 10–19.CrossRefGoogle Scholar
  39. de Silva, S.S. 1988. Reservoirs of Sri Lanka and their fisheries. FAO Fisheries Technical Paper No. 298, Rome.Google Scholar
  40. Dillon, P.J., and F.H. Rigler. 1974. The phos-phorus/chlorophyll relationship in lakes. Limnology and Oceanography 19: 767–773.CrossRefGoogle Scholar
  41. Dini, M.L., and S.R. Carpenter. 1992. Fish predators, food availability and diel vertical migration in Daphnia. Journal of Plankton Research 14: 359–377.CrossRefGoogle Scholar
  42. Domagalski, J., C. Lin, Y. Luo, J. Kang, S. Wang, L.R. Brown, and M.D. Munn. 2007. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People’s Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen. Agrilculture and Water Management 94: 43–53.CrossRefGoogle Scholar
  43. Duthie, H.C., and M.L. Ostrofsky. 1975. Environmental impact of the Churchill Falls (Labrador) hydroelectric project: A preliminary assessment. Journal of the Fisheries Research Board of Canada 32: 117–125.Google Scholar
  44. Elser, J.J., L.B. Stabler, and R.P. Hassett. 1995. Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: A comparative study. Aquatic Microbial Ecology 9: 105–110.CrossRefGoogle Scholar
  45. Eskinazi-SantAnna, E.M., R. Menezes, I.S. Costa, M. Araujo, R. Pauoss, and J.L. Attayd. 2013. Zooplankton assemblages in eutrophic reservoirs of the Brazilian semi-arid. Brazil Journal of Biology 73(1): 37–52.CrossRefGoogle Scholar
  46. Fenchel, T. 1980. Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance. Microbial Ecology 6: 13–25.PubMedCrossRefGoogle Scholar
  47. Garg, R.K., R.J. Rao, D. Uchchariya, G. Shukla, and D.N. Saksena. 2010. Seasonal variations in water quality and major threatsto Ramsagar reservoir, India. African Journal of Environment Science and Technology 4(2): 061–076.Google Scholar
  48. Gasol, J.M., M. Comerma, J.C. Garcia, J. Armengol, E.O. Casamayor, P. Kojecká, and K. Simek. 2002. A transplant experiment to identify the factors controlling bacterial abundance, activity, production and community composition in a eutrophic canyon-shaped reservoir. Limnology and Oceanography 47: 62–77.CrossRefGoogle Scholar
  49. Gemelgo, M.C.P., J.L.N. Mucci, and D. Navas-Pereira. 2009. Population dynamics: Seasonal variaton of phytoplankton functional group in Brazilian reservoir (Bilings and Gaurapiranga, Sao Paulo). Brazil Journal of Biology 69(4): 1001–1013.CrossRefGoogle Scholar
  50. Geraghty, J.J., D.W. Miller, F. Van Der Leeden, and F.L. Troise. 1973. Water atlas of the United States, 122. Washington, DC: Water Information Center.Google Scholar
  51. Geraldes, A.M., and M.J. Boavida. 2004. Do littoral macrophyates influence crustacean zooplankton distribution? Limnetica 23: 57–64.Google Scholar
  52. Goerge, D.G., and R.W. Edwards. 1976. The effect of wind on the distribution of chlorophyll a and crustacean plankton in a shallow eutropic reservoir. Journal of Applied Ecology 13: 667–690.CrossRefGoogle Scholar
  53. Goldman, C.R., and B. Kimmel. 1978. Biological processes associated with suspended sediment and detritus in lakes and reservoirs. In Current perspectives on river-reservoir ecosystems, eds. Cairns J., Benfield E.F. and Webster J.R. Publication number 1, North American Benthological Society, Columbia, Missouri.Google Scholar
  54. Gonzalez, J.E., M. Ortaz, C. Peñaherrera, and A. deInfante. 2004. Physical and chemical features of tropical hypertrophic reservoir permanently stratified. Hydrobiologia 522: 301–310.CrossRefGoogle Scholar
  55. Grime, J.P. 1979. Plant strategies and vegetation processes, 222. New York: Wiley.Google Scholar
  56. Gummadavelli, V., R.S. Pisk, S. Noothi, and P.K. Manikonda. 2013. Seasonal bioaccumulation of heavy metals in Cyprinus carpio of Edulabad Water Reservoir, Andhra Pradesh, India. International Journal of LifeScience Biotechnology and Pharmaceutical Research 2(3). http://www.ijlbpr.com/currentissue.php.
  57. Haldar, G.C, M.A. Mazid, and K.K. Ahmed. 1992. Limnology and primary production of Kaptai Lake, Bangladesh. In: de Silva, S.S. Reservoir Fisheries of Asia. In Proceedings of the 2nd Asian Reservoir Fisheries Workshop. Hangzhou, Peoples Republic of China, 15–19 October 1990. IDRC, Ontario.Google Scholar
  58. Hamilton, D.P. 1999. Numerical modelling and lake management: applications of the DYRESM model. In Theoretical reservoir ecology and its applications, ed. J.G. Tundisi, and M. Straskraba, 153–174. The Netherlands: Backhuys Publishers.Google Scholar
  59. Harold, C.H.H. 1938. Metropolitan water board. Rep. Results Bacteriology, Chemistry, Biology. Exam. London Waters 31: 117.Google Scholar
  60. Harris, G.P. 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Archiv für Hydrobiologie-Bieheft Ergebnisse der Limnologie 10: 1–163.Google Scholar
  61. Harris, G.P. 1980. Spatial and temporal scales in phytoplankton ecology. Mechanism, methods, models and management. Canadian Journal of Fisheries and Aquatic Science 37: 877–900.CrossRefGoogle Scholar
  62. Harris, G.P. 1983. Mixed layer physics and phytoplankton populations: Studies in equilibrium and non-equilibrium studies. Progress in Phycological Research 2: 1–52.Google Scholar
  63. Harris, G.P. 1986. Phytoplankton ecology: Structure, function and fluctuation, 384. New York: Chapman and Hall.CrossRefGoogle Scholar
  64. Hecky, R.E., R.W. Newbur, R.A. Bodaly, K. Patalas, and D.M. Rosenberg. 1984. Environmental impact prediction and assessment: The Southern Indian Lake experience. Canadian Journal of Fisheries and Aquatic Sciences 41: 720–732.CrossRefGoogle Scholar
  65. Henry, R. 1992. The oxygen deficit in Jurumirim Reservoir (Paranapanema River, Sao Paulo, Brazil). Japanese Journal of Limnology 53: 379–384.CrossRefGoogle Scholar
  66. Henry, R. 1997. Thermal regime and stability of Jurumirim Reservoir (Paranapanema River, Sao Paulo, Brazil). Internationale Revue der gesemten Hydrobiologie 78: 501–511.CrossRefGoogle Scholar
  67. Henry, R. 1999. Heat budgets, thermal structure and dissolved oxygen in brazilian reservoirs. In Theoretical reservoir ecology and its applications, ed. J.G. Tundisi, and M. Straskaba, 125–151. Leiden: Backhuys.Google Scholar
  68. Henry, R., and P.R. Curi. 1981. Inflencias de parametrosclimatologicossobrealgunsfatoresfisicoquimicos da aguanaReresa do Rio Pardo (Botucatu, SP). Revista Brasileira de Biologia 41: 291–306.Google Scholar
  69. Hui, T., P. Xie, L. Guo, Z. Chu, and M. Liu. 2014. Phytoplankton dynamics and their equilibrium phases in the Yaghe Reservoir, China. Journal of Freshwater Ecology 29: 1–15.CrossRefGoogle Scholar
  70. Humborg, C., V. Ittekkot, A. Cociasu, and B. von Bodungen. 1997. Effect of Danube river dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388.CrossRefGoogle Scholar
  71. Hutchinson, G.E. 1938. On the relation between oxygen deficit and typology of lakes. Internationale Revue der gesemten Hydrobiologie 36: 336–355.CrossRefGoogle Scholar
  72. Hutchinson, G.E. 1973. Eutrophication. American Science 61: 269–279.Google Scholar
  73. Imberger, J. 1985. Thermal characteristics of standing waters: An illusion of dynamic processes. Hydrobiologia 125: 7–29.CrossRefGoogle Scholar
  74. Ittekkot, V., C. Humborg, and P. Schäfer. 2000. Hydrological alterations and marine biogeochemistry: A silicate issue? BioScience 50(9): 776–782.CrossRefGoogle Scholar
  75. Iwamoto, R.N., E.O. Salo, M.A. Madej, and R.L. McComas. 1978. Sediment and water quality: a review of the literature including a suggested approach for water quality criteria with summary and conclusions and recommendations. EPA 910/9-78-048, United States Environmental Protection Agency, Washington, DC.Google Scholar
  76. Jackson, D.C. 1995. Building the ultimate dam: John S. Eastwood and the control of water in West. Lawence, KS: University Press of Kansas.Google Scholar
  77. Jackson, D.F., and J. McFadden. 1954. Phytoplankton photosynthesis in Sanctuary Lake, Pymatuning Reservoir. Ecology 35(1): 1–4.CrossRefGoogle Scholar
  78. Javornicky, P. 1966. Light as the main factor limiting the development of diatoms in the Slapy Reservoir, 1958–1960. Verhandlungen des Internationalen Verein Limnologie 16: 701–712.Google Scholar
  79. Jayakrishnan, R., R. Srinivasan, C. Santhi, and J.G. Arnold. 2005. Advances in the application of the SWAT model for water resources management. Hydrological Processes 19: 749–762.CrossRefGoogle Scholar
  80. Jeong, K.S., F. Recknagel, and G.-J. Joo. 2003. Prediction and elucidation of population dynamics of blue-green algae Microcystis aeruginosa and the diatom Stephanodiscus hantzschii in the Nakdong River-Resevoir System (South Korea) by a recurrent neural Network. In Ecological informatics. Understanding ecology by biologically inspired computation, ed. F. Recknagel, 195–213. Berlin: Springer.Google Scholar
  81. JepaChandera Mohan, P.J., S. Godwin Wesley, S. Ramya, N. Alaguchamy, M. Kalayanasundaram, and R. Jayakumararaj. 2009. Correlation between the Diversity Manifestation and Phytoplankton Productivity in Pechiparai Reservoir, Kanyakumari District, Tamil Nadu. Ethnobotanical Leaflets 13: 316–319.Google Scholar
  82. Johnson, M.V. 1949. Relation of plankton to hydrographic conditions in Swectwatcr Lake. Journal of American Water Works Association 41: 347–356.Google Scholar
  83. Jones, C.G., J.H. Lawton, and M. Shachak. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 1946–1957.CrossRefGoogle Scholar
  84. Kalff, J., and R. Knoechel. 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Annual Review of Ecological Systematics 9: 475–495.CrossRefGoogle Scholar
  85. Kanagasabapathi, V., and M.K. Rajan. 2010. A preliminary survey of plankton in Irrukkangudi Reservoir, Virudhunagar district, T.N. India. Journal of Phytology 2(3): 63–72.Google Scholar
  86. Kaparapu, J., and M.N.R. Geddada. 2013. Seasonal distribution of phytoplankton in Riwada Reservoir, Visakhapatnam, Andhra Pradesh, India. Notulae Scientia Biologicae 5(3): 290–295.Google Scholar
  87. Kennedy, R.H. 1984. Lake-river interactions: implications for nutrient dynamics in reservoirs. In: Proceedings of the third annual conference of the North American lake management society. EPA-440/5/84-001, U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  88. Kennedy, R.H. 1999. Reservoir Design and operation: Limnological implications and management oppurtunities. In Theoretical reservoir ecology and its applications, ed. J.G. Tundisi, and M. Straskaba, 1–28. Leiden: Backhuys.Google Scholar
  89. Khan, M.F., and P. Panikkar. 2009. Assessment of impact of invasive fishes on the food web structure and ecosystem properties of a tropical reservoir in India. Ecological Modeling 220: 2281–2290.CrossRefGoogle Scholar
  90. Kimmel, B.L. and A.W. Groeger. 1984. Factors controlling primary production in lakes and reservoirs: a perspective. In: Lake and Reservoir Management EPA 440/84-001, 277–281. Washington, DC.Google Scholar
  91. Kira, T. 1993. Major environmental problems in world lakes. Memorias do Instituto de Italian Idrobiologie 52: 1–7.Google Scholar
  92. Kuo, J.-T., W.-S. Lung, C.-P. Yang, W.-C. Liu, M.-D. Yang, and T.-S. Tang. 2006. Eutrophication modeling of reservoirs in Taiwan. Environmental Modeling and Software 21: 829–844.CrossRefGoogle Scholar
  93. Kuo, J.-T., W.-C. Liu, R.-T. Lin, W.-S. Lung, M.-D. Yang, C.-P. Yang, and S.-C. Chu. 2007. Water quality modeling for the Feitsui reservoir in northern Taiwan. Journal of American Water Resource Association 39: 671–687.CrossRefGoogle Scholar
  94. Lampert, W., E. McCauley, and B.F.J. Manly. 2003. Tradeoffs in the vertical distribution of zooplankton: Ideal free distribution with costs? Proceedings of Royal Society of London 270: 765–773.CrossRefGoogle Scholar
  95. Lasenby, D.C. 1975. Development of oxygen deficits in 14 Southern Ontario lakes. Limnology and Oceanography 20: 993–999.CrossRefGoogle Scholar
  96. Lee, T., E. Rister, B. Narasimhan, R. Srinivasan, D. Andrew, and M. Ernst. 2010. Evaluation and spatially distributed analyses of proposed cost-effective BMPs for reducing phosphorous level in Cedar Creek Reservoir, Texas. Transactions of the ASABE 53(5): 1619–1627.CrossRefGoogle Scholar
  97. Lewis Jr, W. 1987. Tropical limnology. Annual Review of Ecology and Systematics 18: 159–184.CrossRefGoogle Scholar
  98. Lienesch, P.W., and W.J. Matthews. 2000. Daily fish and zooplankton abundances in the littoral zone of Lake Texoma, Oklahoma-Texas, in relation to abiotic variables. Environmental Biology and Fisheries 59: 271–283.CrossRefGoogle Scholar
  99. Likens, G.E. 2010. Lake ecosystem ecology: A global perspective. New York: Academic Press.Google Scholar
  100. Maberly, S.C., M.A. Hurley, C. Butterwick, J.E. Corry, S.I. Haeney, A.E. Irish, G.H.M. Jaworsk, J.W.G. Lund, C.S. Reynolds, and J.V. Roscoe. 1994. The rose and fall of Asterionella Formosa in the south basin of Windermere: analysis of a 45-year series of data. Freshwater Biology 31: 19–34.CrossRefGoogle Scholar
  101. Majagi, S., and K. Vijaykumar. 2009. Ecology and abundance of zooplankton in Karanja reservoir. Environmental Monitoring and Assessment 152: 451–458.PubMedCrossRefGoogle Scholar
  102. Mackenzie, E.F.W. 1956. Metropolitan Water Board, Rep. Results Bacteriology, Chemistry, Biology Exam. London Waters 35: 116.Google Scholar
  103. Maline, K.M., K.D. Koupal, B.C. Peterson, and W.W. Hoback. 2011. Distribution of zooplankton in Harlan County Reservoir, Nebraska. Transactions of the Nebrasca Academy of Science 32: 78–82.Google Scholar
  104. Margalef, R. 1983. Limnologia, 1010. Barcelona: Omega.Google Scholar
  105. Marzolf, G.R. 1990. Reservoirs as environments for zooplankton. In Reservoir limnology: Ecological perspectives, ed. K.W. Thornton, B.L. Kimmel, and F.E. Payne, 195–208. New York: Wiley.Google Scholar
  106. Marzolf, G.R., and J.A. Osborne. 1972. Primary production in a Great Plains reservoir. Internationale Vereinigungfuir Theoretische and Angewandte Limnologie: Verhandlungen 18: 126–133.Google Scholar
  107. Masín, M., K. Imek, J. Jezbera, J. Nedoma, V. Straskrabová, and J. Hejzlar. 2003. Changes in bacterial community composition and microbial activities along the longitudinal axis of two differently loaded canyon-shaped reservoirs. Hydrobiologia 504: 99–113.CrossRefGoogle Scholar
  108. Matsumara-Tundisi, T., K. Hino, and S.M. Claro. 1981. Limnoligical studies at 23 reservoirs in southern parts of Brazil. Verhandlungen des Internationalen Verein Limnologie 21: 1040–1047.Google Scholar
  109. Méthot, G., and B. Pinel-Alloul. 1987. Fluctuations du zooplankton dans le réservoir LG-2 (Baie James, Québec): Relation avec la qualitéphysico-chimiqueettrophique des eaux. Naturaliste Canadien (Review of Écological Systematics) 114: 369–379.Google Scholar
  110. Miljanović, B., I. Mijić, V. Jovanović, and S. Sipos. 2010. Response of phytoplankton associations of Zavoj Reservoir (Serbia) to seasonal variation in hydrochemical parameters. In: Proceedings of Balwois. Ohrid, Republic of Macedonia, 25–29 May 2010.Google Scholar
  111. Mills, E.L., and A. Schiavone Jr. 1982. Evaluation of fish communities through assessment of zooplankton populations and measures of lake productivity. North American Journal of Fisheries and Management 2: 14–27.CrossRefGoogle Scholar
  112. Moehl, J.F., and W.D. Davies. 1993. Fishery intensification in small water bodies. A review for North America. FAO Fisheries Technical Paper No. 333. Rome.Google Scholar
  113. Mooji, et al. 2010. Challenges and opportunities of lake ecosystem modeling approaches. Aquatic Ecology 10: 663–667.Google Scholar
  114. Morrison, K.D. 2010. Dharmic projects, imperial reservoirs, and new temples of India: An historical perspective on dams in India. Conservation Society 8(3): 182–195.CrossRefGoogle Scholar
  115. Moss, B., M. Beklioglu, L. Carvalho, S. Kilinc, S. McGowan, and D. Stephen. 1997. Vertically-challenged limnology: Contrasts between deep and shallow lakes. Hydrobiologia 342: 257–267.CrossRefGoogle Scholar
  116. Mukherjee, D., L.S. Dora, and R.K. Tiwary. 2012. Evaluation of water quality index for drinking purposes in the case of Damodar River, Jharkhand and West Bengal Region, India. Journal of Bioremediation and Biodegradation 3: 161. doi: 10.4172/2155-6199.1000161.CrossRefGoogle Scholar
  117. Muyalert, K., S. Declerck, J. Van Wichelen, L. De Meester, and W. Vyverman. 2005. An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnology 36: 69–78.CrossRefGoogle Scholar
  118. Myrdal-Runebjer, E. 1996. Rice and millet: An archaeological case study of a Sri Lankan transbasin reservoir system. Gotarc Series B. Gothenburg Archaeological Theses No. 6. Göteborg: Göteborg University.Google Scholar
  119. Mwaura, F. 2006. Some aspects of water quality characteristics of small shallow tropical man-made reservoirs in Kenya. African Journal of Science and Technology 7(1): 82–86.Google Scholar
  120. Narasimhan, B., R. Srinivasan, S. Bedmarz, M. Ernst, and P.M. Allem. 2010. A comprehensive modeling approach for water quality assessment and management due to point and non-point pollution. Transactions of the ASABE 53(5): 1605–1617.CrossRefGoogle Scholar
  121. National Register of Large Dams. 2014. Dam Safety Organization of Central Water Commission. India.Google Scholar
  122. Neistch, S.L., J.G. Arnold, J.R. Kiniry, and J.R. Williams. 2005. Soil and water assessment tool theoretical documentation. Ver. 2005. Temple, Tex.: USDA-ARS Grassland Soil and Water Research Laboratory, and Texas A and M University, Blackland Research and Extension Centre.Google Scholar
  123. Neistch, S.L., J.G. Arnold, J.R. Kiniry, R. Srinivasan, and J.R. Williams. 2004. Soil and water assessment tool input/output file documentation. Ver. 2005. Temple, TX: USDA-ARS Grassland Soil and Water Research Laboratory.Google Scholar
  124. Ofori-Danson, P.K., and W.J. Ntow. 2005. Studies on the current state of the limnochemistry and potential fish yield of Lake Volta (Yeji sector) after three decades of impoundment. Ghana Journal of Agriculture and Science 35: 65–72.Google Scholar
  125. Ostrofsky, M.L., and H.C. Duthie. 1980. Trophic upsurge and the relationship between phytoplankton biomass and productivity in Smallwood Reservoir, Canada. Canadian Journal of Botany 58(10): 1174–1180.Google Scholar
  126. Ou, H., C.-H. Wei, Y. Deng, and N.-Y. Gao. 2013. Principal component analysis to assess the composition and fate of impurities in a large river-embedded reservoir: Qingcaosha Reservoir. Environmental Sciences: Processes Impacts 15: 1613.Google Scholar
  127. Patalas, K., and A. Salki. 1984. Effects of impoundment and diversion on the crustacean plankton of Southern Indian Lake. Canadian Journal of Fisheries and Aquatic Sciences 41: 613–627.CrossRefGoogle Scholar
  128. Pokale, M.K., V.D. Nemade, and A.O. Mahajan 2008. Reservoir water quality and irrigation—A case study of Jayakwadi Dam, Maharashtra. In: Proceedings of 3rd international conference on water quality management, 30–39, 18(1).Google Scholar
  129. Pokale, W.K., J.N. Thakre, and R. Warhate. 2010. Water quality status of Pench Reservoir, (India). Journal of Environmental Science and Engineering 52(3): 255–258.PubMedGoogle Scholar
  130. Raman, H., and V. Chandramouli. 1996. Deriving a general operating policy for reservoirs using neural network. J. Water Resource Planning and Management 122: 342–347.CrossRefGoogle Scholar
  131. Recknagel, F., M. Burch, G. Jablonskas, J. Minney, and S. Schoofs. 1998. Combined effects of organic pollution and eutrophication in the South para Reservoirs, South Australia. Water Science and Technology 37(2): 113–120.CrossRefGoogle Scholar
  132. Recknagel, F., T. Petzoldt, O. Jacke, and F. Krusche. 1994. Hybrid expert system DELAQUA—A toolkit for water quality control of lakes and reservoirs. Ecological Modeling 71(1–3): 17–36.CrossRefGoogle Scholar
  133. Reynolds, C.S. 1984. Phytoplankton periodicity: The interactions of form, function and environment variability. Freshwater Biology 14: 111–142.CrossRefGoogle Scholar
  134. Reynolds, C.S. 1986. Phytoplankton periodicity: The interactions of form, function and environment variability. Freshwater Biology 14: 111–142.CrossRefGoogle Scholar
  135. Reynolds, C.S. 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Growth and reproductive strategies of freshwater phytoplankton, ed. C.D. Sandgren, 388–433. Cambridge: Cambridge University Press.Google Scholar
  136. Reynolds, C.S. 1997. Vegetation processes in the Pelagic. A model for ecosystem theory (Excellence in Ecology, 9). ECI, Oldendorf.Google Scholar
  137. Reynolds, C.S. 1999. Phytoplankton assemblages in Reservoirs. In Theoretical reservoir ecology and its application, ed. J.G. Tundisi, and M. Straskaba, 439–456. Leiden: Backhuys.Google Scholar
  138. Reynolds, C.S. 2006. The ecology of phytoplankton, 535. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  139. Reynolds, C.S., and S.W. Wiseman. 1982. Sinking losses of phytoplankton maintained in closed limnetic systems. Journal of Plankton Research 4: 489–522.CrossRefGoogle Scholar
  140. Reynolds, C.S., V.L. Huszar, L. Naselli-Flores, and S. Melo. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Phytoplankton Research 24: 417–428.CrossRefGoogle Scholar
  141. Robson, B.J., and D.P. Hamilton. 2003. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling 174: 203–222.CrossRefGoogle Scholar
  142. Rodhe, W. 1964. Effects of impoundment on water chemistry and plankton in Lake Ransaren (Swedish Lappland). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 15: 437–443.Google Scholar
  143. Romero, J.R., and J. Imberger. 1999. Seasonal horizontal gradients of dissolved oxygen in a temperate Austral Resevoir. In Theoretical reservoir ecology and its applications, ed. J.G. Tundisi, and M. Straskaba, 211–226. Leiden: Backhuys.Google Scholar
  144. Sanders, R.W., D.A. Caron, and U.G. Berninger. 1992. Relationship between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Marine Ecology Progress Series 86: 1–14.CrossRefGoogle Scholar
  145. Scheffer, M. 1999. Searching explanation of nature in the mirror world of math. Conservation Ecology 3(2): 11.CrossRefGoogle Scholar
  146. Schetagne, R. 1990. Suivi de la qualité d l’eau, du phytoplancton, du zooplanctonet du benthos au Complexe La Grande, Territoire de la Baie James. In: Managing the effects of hydroelectric development, Collect. Environmental Géology, eds. Delisle C.E. and Bouchard M.A., 44–65, 9.Google Scholar
  147. Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184: 897–899.PubMedCrossRefGoogle Scholar
  148. Schweitzer, B., and M. Simon. 1995. Growth limitation of planktonic bacteria in a large mesotrophic lake. Microbial Ecology 30: 89–104.PubMedCrossRefGoogle Scholar
  149. Selje, N., and M. Simon. 2003. Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquatic Microbiology and Ecology 30: 221–237.CrossRefGoogle Scholar
  150. Sharma, D.K., and R.P. Singh. 2012. Seasonal variation in zooplankton diversity in Tighra reservoir, Gwalior (Madhya Pradesh). Indian Journal of Science Research 3(2): 155–161.Google Scholar
  151. Shaw, J. 2007. Buddhist landscapes in Central India: Sanchi hill and archaeologies of religious and social change, c. 3rd century BC to 5th century AD. London: Society for South Asian Studies. The British Academy.Google Scholar
  152. Shen, Z.Y., Y.W. Gong, Y.H. Li, Q. Hong, L. Xu, and R.M. Liu. 2009. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agricultural Water Management 96: 1435–1442.CrossRefGoogle Scholar
  153. Simek, K., J. Bobkova, M. Macek, and J. Nedoma. 1995. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: A study at the species and community level. Limnology and Oceanography 40(6): 1077–1090.CrossRefGoogle Scholar
  154. Simek, K., K. Horák, M. Masín, U. Christaki, J. Nedoma, M.G. Weinbauer, and J.R. Dolan. 2003. Comparing the effects of resource enrichment and grazing on a bacterioplankton community of a meso-eutrophic reservoir. Aquatic Microbiology and Ecology 31: 123–135.CrossRefGoogle Scholar
  155. Simek, K., K. Hornák, J. Jezbera, J. Nedoma, J. Vrba, V. Straskrábová, M. Macek, J.R. Dolan, and M.W. Hahn. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environmental Microbiology 8(9): 1613–1624.PubMedCrossRefGoogle Scholar
  156. Singh, S.M., S.C. Pandey, S. Pani, and A. Malhosia. 2010. Water quality and pollution status of Laharpur Reservoir with special reference to bacterial contamination. International Journal of Pharmaceutical Studies and Research 1(1): 48–53.Google Scholar
  157. Sinha, A., P. Hazra, and T.N. Khan. 2012. Emergence of a wetland with the potential for an avian abode of global significance in South Bengal, India. Current Science 102(4): 613–616.Google Scholar
  158. Sivakumar, K., and R. Karuppasamy. 2008. Factors affecting productivity of phytoplankton in a reservoir of Tamilnadu, India. American-Eurasian Journal of Botany 1(3): 99–103.Google Scholar
  159. Sklar, F.H., and R. Costanza. 1991. The development of dynamic spatial models for landscape ecology: A review and prognosis. In Quantative methods in landscape ecology. Ecological studies, vol. 82, ed. M.G. Turner, and R.H. Gardner, 239–288. New York: Springer.CrossRefGoogle Scholar
  160. Small, L.F. 1963. Effect of wind on the distribution of chlorophyll a in Clear Lake, Iowa. Limnology and Oceanography 8: 426–432.CrossRefGoogle Scholar
  161. Soballe, D.M., B.L. Kimmel, R.H. Kennedy, and R.F. Gaugush. 1992. Reservoirs. In Biodiversity of the southeastern United States, ed. C.T. Hackney, S.M. Adams, and W.H. Martin, 421–474. New York: Wiley.Google Scholar
  162. Solanki, P., S. Singh, I.V. Sharma, and R. Mathur. 2011. Fish fauna of Sanjay Sagar reseirvoir of District Guna (MP). Biological Forum—An International Journal 3(1): 44–45.Google Scholar
  163. Soylu, E.N. 2010. Functional classification and composition of phytoplankton in Liman Lake. Turkish Journal of Fisheries and Aquatic Sciences 10: 53–60.CrossRefGoogle Scholar
  164. Stanley, E.H., and M.W. Doyle. 2003. Trading off: The ecological effects of dam removal. Ecological Society of America: Frontiers in Ecology and Environment 1(1): 15–22.Google Scholar
  165. Stern, E.M., and W.B. Stickle. 1978. Effects of turbidity and suspended material in aquatic environments, literature review. Technical Report D-78-2 I. United States Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, USA.Google Scholar
  166. Straskaba, M., J.G. Tundisi, and A. Duncan. 1993. State of the art of reservoir limnology and water quality management. In Comparative reservoir limnology and water quality management, ed. M. Straskaba, J.G. Tundisi, and A. Duncan, 213–288. Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  167. Straskraba, M., and P. Javornicky. 1973. Limnology of two reregulation reservoirs in Czechoslovakia. In Hydrobiological studies 2, ed. J. Hrbacek, and M. Straskraba, 244–316. Ceske Budejovice, Czechoslovakia: Czechoslovak Academy of Sciences.Google Scholar
  168. Straskraba, M., and J.G. Tundisi. 1999. Guidelines of lake management. Vol 9. Reservoir water quality management, 41–57. Interntional Lake Environmental Commission. Japan.Google Scholar
  169. Summarwar, S. 2012. Studies on plankton diversity in Bisalpur Reservoir. International Journal of Life Sciences Botany and Pharmaceutical Research 1(4). http://www.ijlbpr.com/currentissue.php.
  170. Syvitski, J.P.M., A.J. Kettner, A. Correggiari, B.W. Nelson. 2005. Distributary channels and their impact on sediment dispersal. Marine Geology 222-223: 75-94.Google Scholar
  171. Talling, J.F. 1957. Diurnal changes of stratification and photosynthesis in some tropical African waters. Proceedings of the Royal Society London 147: 57–83.CrossRefGoogle Scholar
  172. Taylor, M.W. 1971. Zooplankton ecology of a Great Plains reservoir. Thesis. Kansas State University, Manhattan, Kansas. USA.Google Scholar
  173. Thomaz, S.M., L.M. Bini, and S.M. Alberti. 1997. Limnologia do reservatorio de Segredo: padroes de variacoa especial e temporal. In: Reservatorio de Segredo. Bases ecologicaspara o manejo. Maringa, 19–37, eds. Agostinho, A.A. and L.C. Gomes. Editora da Universida de Estadual de Maringa.Google Scholar
  174. Thornton, J.A. 1980. A comparison of the summer phosphorus loadings to three Zimbabwean water-supply reservoirs of varying trophic states. Water SA 6(4): 163–170.Google Scholar
  175. Thorton, J., A. Steel, and W. Rast. 1996. Reservoirs. In: Water quality assessmentsA guide to use of biota, sediments and water in environmental monitoring, ed. Chapman, D., 2nd edn. UNESCO/WHO/UNEP.Google Scholar
  176. Toolan, T., J.D. Wehr, and S. Findlay. 1991. Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake. Applied Environmental Microbiology 57: 2074–2078.PubMedPubMedCentralGoogle Scholar
  177. Tundisi, J.G. 1984. Estratificacao hidraulica em reservatorios e suas cosequencias ecologicas. Ciencia e Cultura 36: 1489–1496.Google Scholar
  178. Tundisi, J.G. 1988. Impactosecologicos da construcao de represas: aspectosespecificos e problemas de manelo. In: Limnologia e manejo de represas, Serie: Monografiasemlimnologia, Vol. 1(1), 1–75, ed. J. G. Tundisi. Academia de Ciencias do Estado de Sao Paulo, Sao Paulo.Google Scholar
  179. Tundisi, J.G., T. Matsumara-Tundisi, O. Rocha, J.G. Gentil, and N. Nakamoto. 1977. Primary production, standing-stock of phytoplankton and ecological factors in a shallow tropical reservoir (Represa do Broa, Sao Carlos, Brazil). Sem. Medio Ambiente Represas Montevideo 1: 138–172.Google Scholar
  180. van Puijenbroek, P.J.T.M., J.H. Janse, and J.M. Knoop. 2004. Integrated modelling for nutrient loading and ecology of lakes in The Netherlands. Ecological Modelling 174: 127–141.CrossRefGoogle Scholar
  181. Verduin, J. 1951. Comparison of spring diatom crops of western Lake Erie in 1949 and 1950. Ecology 32: 662–668.CrossRefGoogle Scholar
  182. Verduin, J. 1960. Phytoplankton communities of Western Lake Erie and the CO2 and O2 changes associated with them. Limnology and Oceanography 5: 327–380.Google Scholar
  183. Viljanen, M., A. Holopainen, M. Rahkola-Sorsa, V. Avinsky, M. Ruuska, S. Leppanen, K. Rasmus, and A. Voutilainen. 2009. Temporal and spatial heterogeneity of pelagic plankton in Lake Pyhaselka, Finland. Boreal Environmental Research 14: 903–913.Google Scholar
  184. Walker Jr, W.W. 1979. Use of Hypolimnetic oxygen depletion rate as a trophic state index for lales. Water Resources Research 15: 1463–1470.CrossRefGoogle Scholar
  185. Ward, J.V., and J.A. Stanford. 1983. The serial discontinuity concept of lotic ecosystems. In Dynamics of lotic ecosystems, ed. T.D. Fontaine, and S.M. Bartell, 29–42. Ann Arbor, Michigan: Annual Arborial Science.Google Scholar
  186. Wisconsin Department of Natural Resources (WDNR). 1995. Wisconsin’s biodiversity as a management issue: A report to the Department of Natural Resources Managers. Madison, WI: WDNR.Google Scholar
  187. Wang, H., W. Wang, C. Yin, Y. Wang, and J. Lu. 2006. Littoral zones as the “hotspots” of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China. Atmosphere and Environment 40: 5522–5527.CrossRefGoogle Scholar
  188. Whitehead, P. 1992. Examples of recent models in environmental impact assessment. Journal of Institution of Water and Environmental Management 6(4): 475–484.CrossRefGoogle Scholar
  189. Wiśniewska, M. 2010. Phytoplankton dynamics in the reservoir lake “Żur” on the Pomeranian Wda River. Oceanological and Hydrobiological Studies 4: 155–169.Google Scholar
  190. World Commission on Dams (WCD). 2001. Dams and development: A new framework for decision making. London: Earthscan Publications.Google Scholar
  191. Wright, J.C. 1959. Limnology of Canyon Ferry Reservoir. II. Phytoplankton standing crop and primary production. Limnology and Oceanography 4: 235–245.CrossRefGoogle Scholar
  192. Wustsbaugh, W., and H. Li. 1985. Diel migrations of a zooplanktivorous fish (Mendidiaberyllina) in relation to the distribution of prey in a large eutrophic lake. Limnology and Oceanography 30: 565–576.CrossRefGoogle Scholar
  193. Yang, M., X.M. Geng, J. Grace, Y.F. Jia, Y.Z. Liu, S.W. Jiao, L.L. Shi, C. Lu, Y. Zhou, and G.C. Lei. 2015. Responses of N2O flux to water level fluctuation and other environmental factors at littoral zone of Miyun Reservoir: a comparison with CH4 fluxes. Biogeosciences Discussion 12: 5333–5363.CrossRefGoogle Scholar
  194. Zagatto, P.A., M.A. Aragao, M.C. Carvalh, and R.C.R. Souza. 1997. Manual de orientação em casos de florações de algas tóxicas: Um problemaambiental e de saúde pública. São Paulo: CETESB 14: 1–24.Google Scholar
  195. Zalocar de Domitrovic, Y., A.S.G. Poi de Neiff, and S.L. Casco. 2007. Abundance and diversity of phytoplankton in the Paraná River (Argentina) 220 km downstream of the Yacyretá reservoir. Brazil Journal of Biology 67(1): 53–63.CrossRefGoogle Scholar

Copyright information

© Zoological Society, Kolkata, India 2016

Authors and Affiliations

  • Moitreyee Banerjee
    • 1
    Email author
  • Joyita Mukherjee
    • 1
  • Santanu Ray
    • 1
  1. 1.Ecological Modelling Laboratory, Department of ZoologyVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations