Advertisement

Proceedings of the Zoological Society

, Volume 68, Issue 1, pp 1–8 | Cite as

Microalgae in Aquaculture: A Review with Special References to Nutritional Value and Fish Dietetics

  • Sudeshna Sen Roy
  • Ruma Pal
Review Article

Abstract

Microalgal biotechnology has gained considerable importance in recent decades and its use is extending day by day into several areas like nutraceutical research, renewable energy source, production of essential biomolecules like β-carotene, astaxanthin, PUFA, bio colorant production, wastewater treatment, bioremediation and aquaculture etc. Among all these, microalgae as a source of nutrition have drawn the attention since long back and are widely used in animal nutrition. Fishmeal is the preferred protein ingredient of feed in aquaculture industry, contributing significantly to the variable production cost. However, decreasing fishmeal supply and increasing costs threaten the sustainability and growth of the aquaculture industry. Therefore, complete or partial substitution of fishmeal with alternative proteins is needed to solve the problem. Presently, microalgae are used worldwide as an alternate protein source replacing fishmeal successfully. In feeding trials with fish, many types of microalgae have been found to be used for increasing growth (protein accretion), feed utilization, physiological activity, stress response, starvation tolerance, disease resistance, and carcass quality. In the present communication an attempt has been taken to review the application of different microalgae in rearing of aquaculture animal especially the fishes.

Keywords

Microalgae Nutrition Aquaculture Dietetics 

Notes

Acknowledgments

The first author is thankful to West Bengal State Council of Science and Technology for financial support.

References

  1. Aaronson, S., T. Berner, and Z. Dubinsky. 1980. Microalgae as a source of chemicals and natural products. In Algae biomass, 575th ed, ed. G. Shelef, and C.J. Soeder. Amsterdam: Elsevier, Biomedical Press.Google Scholar
  2. Appler, H.N. 1985. Evaluation of Hydrodictyon reticulatum as protein source in feeds for Oreochromis niloticus and Tilapia zillii. Journal of Fish Biology 27(3): 327–334.Google Scholar
  3. Atack, T.H., K. Jauncey, and A.J. Matty. 1979. The utilization of some single cell proteins by fingerling mirror carp (Cyprinus carpio). Aquaculture 18: 337–348.Google Scholar
  4. Azaza, M.S., F. Mensi, J. Ksouri, M.N. Dhraief, B. Brini, A. Abdelmouleh, and M.M. Kraı¨em. 2008. Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae Ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia. Journal of Applied Ichthyology 24: 202–207.Google Scholar
  5. Barman, N., G.G. Satpati, S. Sen Roy, N. Khatoon, R. Sen, S. Kanjilal, R.B.N. Prasad, and R. Pal. 2012. Mapping algae of sundarban origin as lipid feedstock for potential biodiesel application. Journal of Algal Biomass Utilisaton 3(2): 42–49.Google Scholar
  6. Becker, E.W. 1984. Biotechnology and exploitation of the green alga Scenedesmus obliquus in India. Biomass 4: 1.Google Scholar
  7. Becker, E.W. 1994. Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press.Google Scholar
  8. Becker, E.W., and L.V. Venkataraman. 1984. Production and utilization of the blue green alga Spirulina in India. Biomass 4: 105.Google Scholar
  9. Becker, E.W. 2004. Micro algae in human and animal nutrition. In Hand book of microalgal culture, ed. A. Richmond, 312–351. Oxford: Blackwell.Google Scholar
  10. Belay, A., T. Kato, and Y. Ota. 1996. Spirulina (Arthrospira); Potential application as an animal feed supplement. Journal of Applied Phycology 8: 303–311.Google Scholar
  11. Ben-Amotz, A. 2004. Industrial production of microalgal cell-mass and secondary products: Major industrial species: Dunaliella. In Hand book of microalgal culture, ed. A. Richmond, 273–280. Oxford: Blackwell.Google Scholar
  12. Ben-Amotz, A., and M. Avron. 1980. Glycerol, β-carotene and dry algal meal production by commercial cultivation of Dunaliella. In Algae biomass, 603rd ed, ed. G. Shalef, and C.J. Soeder. Amsterdam: Elsevier, Biomedical Press.Google Scholar
  13. Ben-Amotz, A., T.G. Tornabene, and W.H. Thomas. 1985. Chemical profiles of selected species of microalgae with emphasis on lipids. Journal of Phycology 21: 72–81.Google Scholar
  14. Benemann, J.R. 1992. Microalgae aquaculture feeds. Journal of Applied Phycology 4: 233–245.Google Scholar
  15. Bermejo Román, R., J.M. Alvárez-Pez, F.G. AciénFernández, and E. Molina Grima. 2002. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology 93: 73–85.PubMedGoogle Scholar
  16. Borowitzka, M.A. 1988. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 4: 267–279.Google Scholar
  17. Borowitzka, M.A. 1998. Algae as food. In Microbiology of fermented foods, 2nd ed, ed. B.J.B. Wood, 585–602. London: Blackie Academic and Professional.Google Scholar
  18. Borowitzka, M.A., and L.J. Borowitzka. 1988. Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In Algal biotechnology, ed. T. Stadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen, 171–181. Barking: Elsevier Applied Science.Google Scholar
  19. Braun, L. 1988. Spirulina: Food for the future. Aquatopics, 9th ed. Baltimore: National Agricultural Library.Google Scholar
  20. Broun, W. 1980. Note on the survival of algal resting cells during long-term maintenance in darkness and minimum lake bottom temperature. Comparison of Anabaena 5: 677–680.Google Scholar
  21. Brown, M.R. 1991. The amino acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 145: 79–99.Google Scholar
  22. Brown, M.R. 2002. Nutritional value of microalgae for aquculture. In: Avances en Nutrición Acuícola VI. eds. L. E Cruz-Suárez, D Ricque-Marie, M Tapia-Salazar, M G Gaxiola-Cortés, N Simoes. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del Cancún, Quintana Roo, México.Google Scholar
  23. Brown, M.R., S.W. Jeffrey, J.K. Volkman, and G.A. Dunstan. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151: 315–331.Google Scholar
  24. Brown, M.R., M. Mular, I. Miller, C. Trenerry, and C. Farmer. 1999. The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology 11: 247–255.Google Scholar
  25. Brown, M.R., and C.A. Farmer. 1994. Riboflavin content of six species of microalgae used in mariculture. Journal of Applied Phycology 6: 61–65.Google Scholar
  26. Bureau, D.P., A.M. Harris, D.J. Bevan, L.A. Simmons, P.A. Azevedo, and C.Y. Cho. 2000. Use of feather meals and meat and bone meals from different origins as protein sources for rainbow trout (Oncorhynchus mykiss) diets. Aquaculture 181: 281–291.Google Scholar
  27. Capper, B.S., J.F. Wood, and A.J. Jackson. 1982. The feeding value for carp of two types of mustard seed cake from Nepal. Aquaculture 29: 373–377.Google Scholar
  28. Chakraborty, S., and S.C. Santra. 2008. Biochemical composition of eight benthic algae collected from Sunderban. Indian Journal of Marine Sciences 37(3): 329–332.Google Scholar
  29. Choi, K.J., V. Nakhost, J. Krukonis, and M. Karel. 1987. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus. Food Biotechnology 1(2): 263–281.PubMedGoogle Scholar
  30. Chu, Fu-Lin E., J.L. Dupuy, and K.L. Webb. 1982. Polysaccharide composition of five algal species used as food for larvae of the American oyster, Crassostrea virginica. Aquaculture 29(3–4): 241–252.Google Scholar
  31. Collyer, D.M., and G.E. Fogg. 1955. Studies on fat accumulation by algae. Journal of Experimental Botany 6: 256.Google Scholar
  32. Cook, B.B. 1960. The nutritive value of waste grown algae. Presented at the 88th annual Meeting of American Public Health Association Inc. San Fransisco.Google Scholar
  33. Coutteau, P., and P. Sorgeloos. 1992. The requirement for live algae and their replacement by artificial diets in the hatchery and nursery rearing of bivalve molluscs: An international survey. Journal of Shellfish Research 11(2): 467–476.Google Scholar
  34. De Philippis, R., A. Ena, R. Paperi, C. Sili, and M. Vincenzini. 2000. Assessment of the potential of Nostoc strains from Pasteur culture collection for the production of polysaccharides of applied interest. Journal of Applied Phycology 12: 401–407.Google Scholar
  35. Duerr, E.O., A. Molnar, and V. Sato. 1998. Cultured microalgae as aquaculture feeds. Journal of Marine Biotechnology 75: 65–70.Google Scholar
  36. Eddy, B.P. 1956. The suitability of some algae for mass cultivation for food with special reference to Dunaliella bioculata. Journal of Experimental Botany 7: 372.Google Scholar
  37. El-Fouly, M.M., F.E. Abdalla, F.K. El-Baz and A.F.A. Fawzi. 1980. Mass production of microalgae in the national research centre. Proceedings of the 2nd Egypt. Cairo: Algae Symposium Cairo.Google Scholar
  38. El-Hindawy, M.M., M.A. Abd-Razic, H.A. Gaber and M.M. Zenhom. 2006. Effect of various level of dietary algae Scenedesmus spp. on physiological performance and digestibility of Nile tilapia fingerlings, 137–149. 1st Scientific Conference of the Egyptian Aquaculture Society. Sinai: Sharm El-Sheikh.Google Scholar
  39. El-Sayed, A.F.M. 1998. Total replacement of fish meal with animal protein sources in Nile tilapia, Oreochromis niloticus (L.) feeds. Aquaculture Research 29: 275–280.Google Scholar
  40. Estevez, J.M., M. Ciancia, and A.S. Cerezo. 2004. System of galactans of the red seaweed Kappaphycus alvarezii with emphasis on its minor constituents. Carbohydrate Research 339: 2575–2592.PubMedGoogle Scholar
  41. Estevez, J.M., M. Ciancia, and A.S. Cerezo. 2008. The system of sulfated galactans from the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta). Location and structural analysis. Carbohydrate Polymers 73: 594–605.Google Scholar
  42. Fisher, A.W., and J.S. Burlew. 1953. Nutritional value of microscopic algae. In Algal culture from laboratory to Pilot plant, 600th ed, ed. J.W. Burlew, 303. Washington: Carnegie institute.Google Scholar
  43. Flaibani, A., Y. Olsen, and T.J. Painter. 1989. Polysaccharides in desert reclamation: Composition of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydrate Research 190: 235–248.Google Scholar
  44. Floreto, E.A.T., S. Teshima, and S. Koshio. 1996. The effects of seaweed diets on the lipid and fatty acids of the Japanese disc abalone Haliotis discus hannai. Fisheries Science 62: 582–588.Google Scholar
  45. Fowler, L.G. 1991. Poultry by product meal as a dietary protein source in fall chinook salmon diets. Aquaculture 99: 309–321.Google Scholar
  46. Fryer, G., and T.D. Iles. 1972. The cichlid fishes of the Great Lakes of Africa: Their biology and evolution, 641. Edinburgh: Oliver & Boyd.Google Scholar
  47. García-González, M.J., J.C. Moreno, F.J. Manzano, M.G. Florencio, and Guerrero. 2005. Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology 115: 81–90.PubMedGoogle Scholar
  48. Getachew, T. 1987. A study of an herbivorous fish, Oreochromis niloticus L., diet and its quality in two Ethiopian Rift Valley lakes, Awasa and Zwai. Journal of Fish Biology 30: 439–449.Google Scholar
  49. Gladue, R.M., and J.E. Maxey. 1994. Microalgal feeds for aquaculture. Journal of Applied Phycology 6: 131–141.Google Scholar
  50. Gouveia, L., and J. Empis. 2003. Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: Effect of storage conditions. Innovative Food Science & Emerging Technologies 4: 227–233.Google Scholar
  51. Güroy, B.K., A.A. Tekinay, S¸. Cirik, D, Gu¨roy, and F, Sanver. 2007. Effects of Ulva rigida or Cystoseira barbata meals as a feed additive on growth performance, feed utilization, and body composition in Nile tilapia, Oreochromis niloticus. Turkish Journal of Veterinary and Animal Sciences 31: 91–97.Google Scholar
  52. Hasan, M.R., and P.M. Das. 1993. A Preliminary study on the use of poultry offal meal as dietary protein source for the fingerlings of Indian major carp, Laboe rohita (Hamilton). In Fish nutrition practise, ed. S.J. Kaushik, and P. Luquet, 793–801. Paris: Institut National de la Recheche Agronomique.Google Scholar
  53. Hasan, M.R., M.S. Haq, R.M. Das, and G. Mowlah. 1997. Evaluation of poultry feather meal as a dietary protein source for Indian major carp, Labeo rohita Fry. Aquaculture 151: 47–54.Google Scholar
  54. Hasan, M.R., A.K. Azad, A.M. Omar Farooque, A.M. Akand, and P.M. Das. 1991. Evaluation of some oilseed cakes as dietary protein sources for the fry of Indian major carp, Labeo rohita (Hamilton). In Fish nutrition research in Asia, 5th ed, ed. S.S. De Silva, 107–117. Manila: Asian Fisheries Society.Google Scholar
  55. Hasan, M.R., P.K. Roy, and A.M. Akand. 1994. Evaluation of leucaena leaf meal as dietary protein source for Indian major carp, Labeo rohita fingerling. In Fish nutrition research in Asia, 6th ed, ed. S.S. De Silva, 69–76. Manila: Asian Fisheries Society.Google Scholar
  56. Hasan, M.R., P.K. Roy, N. Shaheen, and G. Mowlah. 1988. Evaluation of leucaena leaf meal as dietary protein source for the fingerling of Indian major carp, Cirrhinus mrigala (Hamilton) Bangladesh. Journal of Aquaculture 10: 69–82.Google Scholar
  57. Hejazi, M.A., and R.H. Wijffels. 2004. Milking of microalgae. Trends in Biotechnology 22: 189–194.PubMedGoogle Scholar
  58. Henson, R. 1990. Spirulina improves Japanese fish feeds. Aquaculture Magazine 6: 38–43.Google Scholar
  59. Higgs, D.A., J.R. Markert, D.W. Macquarrie, J.R. McBride, B.S. Dosanjh, C Nichols and G. Hoskins. 1979. Development of practical dry diets for coho salmon, Oncorhynchus kisutch, using poultry by-product meal, feather meal, soybean meal, and rapeseed meal as major protein sources. Proceedings of the World Symposium on Finfish Nutrition and Fishfeed Technology, Hamburg, 20–23, 1978. Vol.II. Berlin. pp 191–218.Google Scholar
  60. Hindak, F., and S. Probil. 1968. Chemical composition, protein digestibility and heat of combustion of filamentous green algae. Plant Biology 10: 234.Google Scholar
  61. Hossain, M.A., and K. Jauncey. 1989. Nutritional evaluation of some Bangladeshi oil seed meals as partial substitutes for fish meal in the diets of common carp, Cyprinus carpio L. Aquaculture and Fisheries Management 20: 255–268.Google Scholar
  62. Hossain, Z., H. Kurihara, and K. Takahashi. 2003. Biochemical composition and lipid compositional properties of the brown alga Sargassum horneri. Pakistan Journal of Biological Sciences 6: 1497–1500.Google Scholar
  63. Jackson, A.J., B.S. Capper, and A.J. Matty. 1982. Evaluation of some plant proteins in complete diets for the tilapia Sarotherodon mossambicus. Aquaculture 27: 97–109.Google Scholar
  64. Jaleel, S.A., and C.J. Soeder. 1978. Current trends in microalgal cultures as protein source in West Germany. Indian Food Packer 27: 45.Google Scholar
  65. Jaya, T.V., M.L. Scarino, and M.A. Spaodoni. 1980. Caratteristiche nutrizional in vivo di Spirulina maxima. In Prospective dellacoltura di Spirulina in Italia, ed. I.R. Materassi, 195. Florence: Firenze-Academia dei Georgofili.Google Scholar
  66. Kates, M., and B.E. Volcani. 1966. Lipid components of Diatoms. Biochimica et Biophysica Acta 116: 264.PubMedGoogle Scholar
  67. Kenyon, C.N. 1972. The fatty acid compositions of unicellular strains of blue green algae. Journal of Bacteriology 109: 827–832.PubMedCentralPubMedGoogle Scholar
  68. Khatoon, N., P. Chattopadhyay, A. Mukhopadhyay, M. Mukhopadhyay, and R. Pal. 2009. Algal diet in prawn aquaculture. Fishing Chimes 28(10/11): 44–47.Google Scholar
  69. Khatoon N, A. Chaudhuri, S. Sen Roy, N. Kundu, S. Mukherjee, D. Mazumdar, S. Homechaudhuri and R. Pal. 2010. Algae as feed supplement in fish nutrition. Journal of Botanical Society of Bengal 64(2): 85–93.Google Scholar
  70. Khatoon, N., P. Sengupta, S. Homechaudhuri, and R. Pal. 2010. Evaluation of algae based feed in Gold fish (Carassius auratus) nutrition. Proceedings of Zoological Society 63(2): 109–114.Google Scholar
  71. Kumar, V., B.R. Pillai, P.K. Sahoo, J. Mohanty, and S. Mohanty. 2009. Effect of dietary astaxanthin on growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man). Asian Fisheries Science 22: 61–69.Google Scholar
  72. Lama, L., B. Nicolaus, V. Calandrelli, M.C. Manca, I. Romano, and A. Gambacorta. 1996. Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10C. Phytochemistry 42: 655–659.Google Scholar
  73. Lewis, R.A. 1956. Extracellular polysaccharides of green algae. Canadian Journal of Microbiology 2: 665–672.Google Scholar
  74. Lim, L.C. 1991. An overview of live feeds productions systems in Singapore. In Rotifer and microalgae culture systems, ed. B.J. Harvey, 203–221. Redmund: Argent Laboratories.Google Scholar
  75. Metting, F.B. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology 17: 477–489.Google Scholar
  76. Millner, H.W. 1948. The fatty acids of Chlorella. Journal of Biochemistry 176: 813–817.Google Scholar
  77. Moriarty, C.M., and D.J.W. Moriarty. 1973. Quantitative estirnation of the daily ingestion rate of phytoplankton by Tilapia nilotica and Haplochromis nigripinnis in Lake George, Uganda. Journal of Zoology, London 171: 15–23.Google Scholar
  78. Mukherjee, S., D. Parial, N. Khatoon, A. Chaudhuri, S. Sen Roy, S. Homechaudhuri, and R. Pal. 2011. Effect of formulated algae based diet on growth performance of Labeo rohita Hamilton. Journal of Algal Biomass Utilisation 2(4): 1–9.Google Scholar
  79. Mustafa, G.M., and H. Nakagawa. 1995. A review: Dietary benefits of algae as an additive in fish feed. Israeli Journal of Aquaculture-Bamidgeh 47: 155–162.Google Scholar
  80. Mustafa, M.G., T. Umino, and H. Nakagawa. 1994. The effect of spirulina feeding on muscle protein deposition in red seabream, Pagrus major. Journal of Applied Icthyology 10: 141–145.Google Scholar
  81. Nichols, B.W. 1970. Comparative lipid biochemistry of photosynthetic organisms. In Phytochemical phylogeny, ed. J.B. Harbone, 105–118. London: Academic Press New York.Google Scholar
  82. Olvera-Novoa, M.A., L.J. Daminguez-Cen, L. Olivera-Castillo, and A. Carlos and Martinez-palacios. 1998. Effect of the use of the micro algae Spirulina maxima as fish meal replacement in diets for tilapia, Oreachromis mossambicus (Peters) fry. Aquaculture Research 29: 709–715.Google Scholar
  83. Paoletti, C., M. Vincentini, F. Bocci, and R. Materassi. 1980. Compositizione biochemical generaledellebiomasse di Spirulinaplatensis e Spirulina maxima. In Prospettive della coltura di Spirulina Italia, vol. 111, ed. R. Materassi. Firenze: Firenze-Accademia dei Georgofili.Google Scholar
  84. Parson, T.R., K. Stephens, and J.D.H. Strickland. 1961. On the chemical composition of eleven species of marine phytoplanktpons. Journal of the Fisheries Research Board of Canada 18: 1001.Google Scholar
  85. Patnaik, S., T.M. Samocha, D.A. Davis, R.A. Bullis, and C.L. Browdy. 2006. The use of algal meals as highly unsaturated fatty acid sources in practical diets designed for Litopenaeus vannamei. Aquaculture Nutrition 12: 395–401.Google Scholar
  86. Percival, E.E., and J.R. Turvey. 1974. Polysaccharides of algae. In CRC, handbook of microbiology, condensed edition, 532nd ed, ed. A.L. Laskin, and H.A. Lechevalier. Cleveland: CRC Press Inc.Google Scholar
  87. Priestly, G. 1976. Algal proteins. In Food from wastes, 144th ed, ed. G.G. Birch, K.J. Parker, and J.T. Worgan. London: Applied Science.Google Scholar
  88. Pulz, O., and W. Gross. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65(6): 635–648.PubMedGoogle Scholar
  89. Ramus, J.S. 1972. The production of extracellular polysaccharides by the unicellular red alga Porphyridium eurugineum. Journal of Phycology 8: 97–111.Google Scholar
  90. Regunathan, C., and S.G. Wesley. 2006. Pigment deficiency correction in shrimp broodstock using Spirulina as a carotenoid source. Aquaculture Nutrition 12(6): 425–432.Google Scholar
  91. Renaud, S.M., D.L. Parry, and L.V. Thinh. 1994. Microalgae for use in tropical aquaculture I: Gross chemical composition and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. Journal of Applied Phycology 6: 337–345.Google Scholar
  92. Ricketts, T.R. 1966. On the chemical composition of some unicellular algae. Phytochemistry 5: 67.Google Scholar
  93. Sasikumar, K. 2000. Studies on biochemical composition and heavy metal accumulation in seaweeds in the Vellar and Uppanar estuaries, southeast coast of India. M. Phil Thesis, Annamalai University, India.Google Scholar
  94. Schneider, J.C., and P. Roessler. 1994. Radiolabeling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae), an oleaginousmarine alga. Journal of Phycology 30: 594–598.Google Scholar
  95. Seguineau, C., A. Laschi-Loquerie, J. Moal, and J.F. Samain. 1996. Vitamin requirements in great scallop larvae. Aquaculture International 4: 315–324.Google Scholar
  96. Sen Roy, S., A. Chaudhuri, S. Mukherjee, S. Homechaudhuri, and R. Pal. 2011. Composite algal supplementation in nutrition of Oreochromis mossambicus. Journal of Algal Biomass Utilisation 2(1): 10–20.Google Scholar
  97. Sen Roy, S., N. Barman, and R. Pal. 2009. Stess Induced changes in total lipid and fatty acid composition of Navicula minima Grun. Journal of Botanical Society of Bengal 63(1): 47–51.Google Scholar
  98. Stickney, R.R., R.W. Hardy, K. Koch, R. Harrold, D. Seawright, and K.C. Massee. 1996. The effects of substituting selected oilseed protein concentrates for fish meal in rainbowtrout Oncorhynchus mykiss diets. Journal of World Aquaculture Society 27: 57–63.Google Scholar
  99. Steffens, W. 1994. Replacing fish meal with poultry by-product meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture 124: 27–34.Google Scholar
  100. Tacon, A.G.J., K. Jauncey, A. Falaye, M. Pantha, I. Macgowan, and E.A. Safford. 1984. The use of meat and bone meal, hydrolysed feather meal and soybean meal in practical fry and fingerling diets for Oreochromis niloticus. In Proceedings of First International Symposium on Tilapia in Aquaculture, ed. L. Fishelson, and Z. Yaron, 356–365. Israel: TelAviv University Press.Google Scholar
  101. Thompson, G.A. 1996. Lipids and membrane function in green algae. Biochimica et Biophysica Acta 1302: 17–45.PubMedGoogle Scholar
  102. Todd Lorenz, R., and G.R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18: 160–167.Google Scholar
  103. Tornabene, T.G., G. Holzer, S. Lien, and N. Burris. 1983. Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme and Microbial Technology 5(6): 435–440.Google Scholar
  104. Trewevas, E. 1983. Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia. British Museum of Natural History, (878)583. Ithica: Comstock Publishing Associates.Google Scholar
  105. Trubachev, N.I., I.I. Gitel’zon, G.S. Kalacheva, V.A. Barashkov, V.N. Belyanin, and R.I. Andreeva. 1976. Biochemical composition of several blue green algae and Chlorella. Prikladnaia Biohimiia i Mikrobiologiia 12: 196–202.Google Scholar
  106. Tseng, C.T., and Y. Zhao. 1994. Extraction, purification and identification of polysaccharides of Spirulina (Arthrospira)platensis (Cyanophyceae). Algological Studies 75: 303–312.Google Scholar
  107. Venkataraman, L.V., and E.W. Becker. 1985. Biotechnology and utilization of algae—The Indian experience. Mysore: Central Food Technological Research Institute. 257.Google Scholar
  108. Venkataraman, L.V., T. Somasekaran, and E.W. Becker. 1994. Replacement value of blue-green alga Spirulina platensis for fishmeal and a vitamin mineral premix for broiler chicks. British Poultry Science 35: 373–381.PubMedGoogle Scholar
  109. Villegas, C.T., O. Millamena, and F. Escritor. 1990. Food Value of (Brachionus plicatilis) fed three selected algal species as live food for milkfish (Chanos chanos) Forsskai, fry production. Aquaculture and Fisheries Management 21: 213–219.Google Scholar
  110. Viskari, P.J., and C.L. Colyer. 2003. Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Analytical Biochemistry 319: 263–271.PubMedGoogle Scholar
  111. Volkman, J.K., S.W. Jeffrey, P.D. Nichols, G.I. Rodgers, and C.D. Garland. 1989. Fatty acid and lipid composition of ten species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128: 219–240.Google Scholar
  112. Vonshak, A. 1997. Spirulina platensis (Arthrospira). In Physiology, cell biology and biotechnology, ed. A. Vonshak. Basingstoke: Taylor and Francis.Google Scholar
  113. Webb, K. L., F E Chu. 1983. Phytoplankton as a food source for bivalve larvae. In Proceedings of the Second International Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition. eds.G. D. Pruder, C. J. Langdon and D. E. Conklin 272–291. Louisiana State University, Baton Rouge, LA.Google Scholar
  114. Wee, K.L., and S.S. Wang. 1987. Nutritive value of Leucaena leaf meal in pelleted feed for Nile tilapia. Aquaculture 62: 97–108.Google Scholar
  115. Yilmaz, M., A. Gumas, S. Yilmaz, and N. Polat. 2003. Aged based food preferences of common carp (Cyprinus carpio L., 1758) inhabiting fish lakes in the Bafra District of Samsun Province (Lakes Tath and Gici). Turkish Journal of Veterinary and Animal Sciences 4: 971–978.Google Scholar
  116. Yongmanitchai, W., and O.P. Ward. 1991. Growth and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Applied and Environmental Microbiology 57: 419–425.PubMedCentralPubMedGoogle Scholar
  117. Zeinhom, M. M. 2004. Nutritional and physiological studies on fish. Ph. D. thesis. Faculty of Agriculture, Zagazig University. Egypt.Google Scholar
  118. Zibetti, R.G.M., M.D. Noseda, A.S. Cerezo, and M.E. Duarte. 2005. The system of galactans from Cryptonemia crenulata (Halymeniaceae, Halymeniales) and the structure of two major fractions. Kinetic studies on the alkaline cyclization of theunusual diad G2S fi D(L)6S. Carbohydrate Research 340: 711–722.PubMedGoogle Scholar

Copyright information

© Zoological Society, Kolkata, India 2014

Authors and Affiliations

  1. 1.Department of BotanyUniversity of CalcuttaKolkataIndia

Personalised recommendations